scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: A collaborative horizon-scanning approach to identify 50 fundamental questions for the continued development of island biology, covering fields ranging from biogeography, community ecology and evolution to global change, may help to foster the formation of interdisciplinary research networks.
Abstract: Aims The 50th anniversary of the publication of the seminal book, The Theory of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a timely moment to review and identify key research foci that could advance island biology. Here, we take a collaborative horizon-scanning approach to identify 50 fundamental questions for the continued development of the field. Location Worldwide. Methods We adapted a well-established methodology of horizon scanning to identify priority research questions in island biology, and initiated it during the Island Biology 2016 conference held in the Azores. A multidisciplinary working group prepared an initial pool of 187 questions. A series of online surveys was then used to refine a list of the 50 top priority questions. The final shortlist was restricted to questions with a broad conceptual scope, and which should be answerable through achievable research approaches. Results Questions were structured around four broad and partially overlapping island topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution, Community Ecology, and Conservation and Management. These topics were then subdivided according to the following subject areas: global diversity patterns (five questions in total); island ontogeny and past climate change (4); island rules and syndromes (3); island biogeography theory (4); immigration–speciation–extinction dynamics (5); speciation and diversification (4); dispersal and colonization (3); community assembly (6); biotic interactions (2); global change (5); conservation and management policies (5); and invasive alien species (4). Main conclusions Collectively, this cross-disciplinary set of topics covering the 50 fundamental questions has the potential to stimulate and guide future research in island biology. By covering fields ranging from biogeography, community ecology and evolution to global change, this horizon scan may help to foster the formation of interdisciplinary research networks, enhancing joint efforts to better understand the past, present and future of island biotas.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a new physical-assisted casting method was developed to tune the orientation of elongated BaTiO3 nanowires in a P(VDF-CTFE) matrix.
Abstract: In practical application, new dielectric capacitors with greater energy density at lower operating voltage will be promising candidates for high-performance electrical devices. Theoretically, it is possible to achieve large electric polarization at a low electric field via embedding aligned ferroelectric nanowires in a polymer matrix, which could release high energy density. However, in terms of practice, the design of nanocomposites with aligned nanowires poses a great technical challenge. Here, a new physical-assisted casting method was developed to tune the orientation of elongated BaTiO3 nanowires in a P(VDF-CTFE) matrix. In the Z-aligned nanocomposites, a large (Dmax − Pr) value of 9.93 μC cm−2 can be induced at a low electric field of 2400 kV cm−1 by aligning 3 vol% ferroelectric BaTiO3 nanowires in the poling direction. Compared with X–Y-aligned nanocomposites even at a high electric field of 3400 kV cm−1, the Z-aligned nanocomposites could exhibit simultaneously an enhanced energy density of 10.8 J cm−3 and a discharge efficiency of 61.4% at 2400 kV cm−1. To the best of our knowledge, among ferroelectric nanocomposites, this is the highest energy density ever obtained at such a low electric field. This work is of critical significance in making dielectric nanocomposites viable for energy storage devices in current electrical and electronic applications.

164 citations

Journal ArticleDOI
TL;DR: The change of the shape of the experimental PES curves with decreasing lithium concentration can be interpreted from the calculated partial DOS as an increasing energetic overlap of the Co/ Ni 3d and O 2p states and a change in the orbital overlap of Co/Ni and O wave functions.
Abstract: LixCoO2 and LixNiO2 (0.5 < x < 1) are used as prototype cathode materials in lithium ion batteries. Both systems show degradation and fatigue when used as cathode material during electrochemical cycling. In order to analyze the change of the structure and the electronic structure of LixCoO2 and LixNiO2 as a function of Li content x in detail, we have performed X-ray diffraction studies, photoelectron spectroscopy (PES) investigations and band structure calculations for a series of compounds Lix(Co,Ni)O2 (0 < x⩽ 1). The calculated density of states (DOS) are weighted by theoretical photoionization cross sections and compared with the DOS gained from the PES experiments. Consistently, the experimental and calculated DOS show a broadening of the Co/Ni 3d states upon lithium de-intercalation. The change of the shape of the experimental PES curves with decreasing lithium concentration can be interpreted from the calculated partial DOS as an increasing energetic overlap of the Co/Ni 3d and O 2p states and a change in the orbital overlap of Co/Ni and O wave functions.

164 citations

Journal ArticleDOI
TL;DR: The concept of novel process windows has recently been proposed by Hessel (2009) and his major processing variant, the pressurised superheated processing, is the topic of several recent reviews in the field as mentioned in this paper.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the Brazilian scenario concerning this kind of technology and discuss the potential of using liquid methanol as a fuel source in the power plant of the future.
Abstract: The fuel cell principle was discovered by Sir Grove 150 years ago. However material problems prohibited its commercialization for a long time. A change has been occurring during the last 30 years, so two types of fuel cell technologies can be distinguished: low and high temperature operation cells. Nowadays, only phosphoric acid cells are commercially offered as 200 kWel power plants. Membrane cells are more suitable for automobile electrotraction with a very low (or no) environmental impact. The fuel continues, however, to play a very particular role, since hydrogen is not easy to store and to transport. The more promising target is the utilization of liquid methanol. The Brazilian scenario concerning this kind of technology is discussed.

164 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493