scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: The ecologically and economically important arbuscular mycorrhizal fungi, crucial in the ecology and physiology of land plants, and the endocytobiotic fungus, Geosiphon pyriformis, are phylogenetically analysed by their small subunit (SSU) rRNA gene sequences and placed into a new monophyletic phylum, the Glomeromycota.

1,804 citations

Proceedings ArticleDOI
09 Jun 2014
TL;DR: FlowDroid is presented, a novel and highly precise static taint analysis for Android applications that successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.
Abstract: Today's smartphones are a ubiquitous source of private and confidential data. At the same time, smartphone users are plagued by carelessly programmed apps that leak important data by accident, and by malicious apps that exploit their given privileges to copy such data intentionally. While existing static taint-analysis approaches have the potential of detecting such data leaks ahead of time, all approaches for Android use a number of coarse-grain approximations that can yield high numbers of missed leaks and false alarms. In this work we thus present FlowDroid, a novel and highly precise static taint analysis for Android applications. A precise model of Android's lifecycle allows the analysis to properly handle callbacks invoked by the Android framework, while context, flow, field and object-sensitivity allows the analysis to reduce the number of false alarms. Novel on-demand algorithms help FlowDroid maintain high efficiency and precision at the same time. We also propose DroidBench, an open test suite for evaluating the effectiveness and accuracy of taint-analysis tools specifically for Android apps. As we show through a set of experiments using SecuriBench Micro, DroidBench, and a set of well-known Android test applications, FlowDroid finds a very high fraction of data leaks while keeping the rate of false positives low. On DroidBench, FlowDroid achieves 93% recall and 86% precision, greatly outperforming the commercial tools IBM AppScan Source and Fortify SCA. FlowDroid successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.

1,730 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: It is indicated that there may have been at least four independent losses of the flagellum in the kingdom Fungi, and the enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
Abstract: The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.

1,682 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: It is discovered that “classical” flow formulations perform surprisingly well when combined with modern optimization and implementation techniques, and while median filtering of intermediate flow fields during optimization is a key to recent performance gains, it leads to higher energy solutions.
Abstract: The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the optimization method, and modern implementation practices influence accuracy. We discover that “classical” flow formulations perform surprisingly well when combined with modern optimization and implementation techniques. Moreover, we find that while median filtering of intermediate flow fields during optimization is a key to recent performance gains, it leads to higher energy solutions. To understand the principles behind this phenomenon, we derive a new objective that formalizes the median filtering heuristic. This objective includes a nonlocal term that robustly integrates flow estimates over large spatial neighborhoods. By modifying this new term to include information about flow and image boundaries we develop a method that ranks at the top of the Middlebury benchmark.

1,529 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed fracture analysis of structural members made of FRP composites and derived the fracture angle which is the key for this evaluation, which is derived in the present paper.

1,529 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493