scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Proceedings Article
23 Aug 2010
TL;DR: A Tree-based Simplification Model (TSM) is proposed, which, to the knowledge, is the first statistical simplification model covering splitting, dropping, reordering and substitution integrally.
Abstract: In this paper, we consider sentence simplification as a special form of translation with the complex sentence as the source and the simple sentence as the target. We propose a Tree-based Simplification Model (TSM), which, to our knowledge, is the first statistical simplification model covering splitting, dropping, reordering and substitution integrally. We also describe an efficient method to train our model with a large-scale parallel dataset obtained from the Wikipedia and Simple Wikipedia. The evaluation shows that our model achieves better readability scores than a set of baseline systems.

396 citations

Journal ArticleDOI
TL;DR: These body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.
Abstract: Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.

395 citations

Journal ArticleDOI
TL;DR: In this article, titania and zirconia-supported gold particles of 1−5 nm size were employed in the partial hydrogenation of acrolein, and their structural and electronic properties were characterized by electron microscopy, electron paramagnetic resonance, and optical absorption spectroscopy aimed at disclosing the nature of the active sites controlling the CO vs CC bonds.
Abstract: Titania- and zirconia-supported gold particles of 1−5 nm size, prepared by various routes of synthesis, were employed in the partial hydrogenation of acrolein. In-depth characterization of their structural and electronic properties by electron microscopy, electron paramagnetic resonance, and optical absorption spectroscopy aimed at disclosing the nature of the active sites controlling the hydrogenation of CO vs CC bonds. The structural characteristics of the catalysts, as mean particle size, size distribution, and dispersion, distinctly depend on the synthesis applied and the oxide support used whereby the highest gold dispersion (DAu = 0.78, Au/TiO2) results from a modified sol−gel technique. For extremely small gold particles on titania and zirconia (1.1 and 1.4 nm mean size), conduction electron spin resonance of the metal and paramagnetic F-centers (trapped electrons in oxygen vacancies) of the support were observed. Besides the influence of the surface geometry on the adsorption mode of the α,β-unsat...

395 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combine a standardized diary approach with time-series analysis methods to investigate the process of self-regulated learning and demonstrate the advantages of using standardized diaries to obtain ecologically valid data on daily learning.

395 citations

Journal ArticleDOI
TL;DR: The design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve gas sensing measurements on specific surfaces, their atomistic/quantum chemical modelling and spectroscopic information obtained on same surfaces under operation conditions of sensors.
Abstract: Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

394 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493