scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: A short overview of the historical development of model-based fault detection, some proposals for the terminology in the field of supervision, fault detection and diagnosis are stated, based on the work within the IFAC SAFEPROCESS Technical Committee as mentioned in this paper.

1,317 citations

Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: High-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel is demonstrated, showing that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.
Abstract: Chaos is good, if you are looking to send encrypted information across a broadband optical network. The idea that the transmission of light-based signals embedded in chaos can provide privacy in data transmission has been demonstrated over short distances in the laboratory. Now it has been shown to work for real, across a commercial fibre-optic channel in the metropolitan area network of Athens, Greece. The results show that the technology is robust to perturbations and channel disturbances unavoidable under real-world conditions. Chaotic signals have been proposed as broadband information carriers with the potential of providing a high level of robustness and privacy in data transmission1,2. Laboratory demonstrations of chaos-based optical communications have already shown the potential of this technology3,4,5, but a field experiment using commercial optical networks has not been undertaken so far. Here we demonstrate high-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel. An optical carrier wave generated by a chaotic laser is used to encode a message for transmission over 120 km of optical fibre in the metropolitan area network of Athens, Greece. The message is decoded using an appropriate second laser which, by synchronizing with the chaotic carrier, allows for the separation of the carrier and the message. Transmission rates in the gigabit per second range are achieved, with corresponding bit-error rates below 10-7. The system uses matched pairs of semiconductor lasers as chaotic emitters and receivers, and off-the-shelf fibre-optic telecommunication components. Our results show that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.

1,267 citations

Journal ArticleDOI
04 Aug 2015
TL;DR: An important approach is to formulate a digital transformation strategy that serves as a central concept to integrate the entire coordination, prioritization, and implementation of digital transformations within a firm.
Abstract: In recent years, firms in almost all industries have conducted a number of initiatives to explore new digital technologies and to exploit their benefits. This frequently involves transformations of key business operations and affects products and processes, as well as organizational structures and management concepts. Companies need to establish management practices to govern these complex transformations. An important approach is to formulate a digital transformation strategy that serves as a central concept to integrate the entire coordination, prioritization, and implementation of digital transformations within a firm. The exploitation and integration of digital technologies often affect large parts of companies and even go beyond their borders, by impacting products, business processes, sales channels, and supply chains. Potential benefits of digitization are manifold and include increases in sales or productivity, innovations in value creation, as well as novel forms of interaction with customers, among others. As a result, entire business models can be reshaped or replaced (Downes and Nunes 2013). Owing to this wide scope and the far-reaching consequences, digital transformation strategies seek to coordinate and prioritize the many independent threads of digital transformation. To account for their company-spanning characteristics, digital transformation strategies cut across other business strategies and should be aligned with them (Fig. 1). While there are various concepts of IT strategies (Teubner 2013), these mostly define the current and the future operational activities, the necessary application systems and infrastructures, and the adequate organizational and financial framework for providing IT to carry out business operations within a company. Hence, IT strategies usually focus on the management of the IT infrastructure within a firm, with rather limited impact on driving innovations in business development. To some degree, this restricts the product-centric and customer-centric opportunities that arise from new digital technologies, which often cross firms’ borders. Further, IT strategies present systemcentric road maps to the future uses of technologies in a firm, but they do not necessarily account for the transformation of products, processes, and structural aspects that go along with the integration of technologies. Digital transformation strategies take on a different perspective and pursue different goals. Coming from a business-centric perspective, these strategies focus on the transformation of products, processes, and organizational aspects owing to new technologies. Their scope is more broadly designed and explicitly includes digital activities at the interface with or fully on the side of customers, such as Accepted after one revision by Prof. Dr. Sinz.

1,258 citations

Journal ArticleDOI
TL;DR: A phenomenological model is established that reveals the parameters essential for such a large adiabatic temperature change ΔT(ad), and it is demonstrated that obstacles to the application of Heusler alloys can be overcome by using the multi-response to different external stimuli and/or fine-tuning the lattice parameters.
Abstract: Magnetic cooling could be a radically different energy solution that could replace conventional vapour compression refrigeration in the future. It is now shown that a Heusler-type magnetocaloric alloy exhibits a remarkable cooling capability due to the effect of a sharp structural transformation at a specific temperature. The finding may be of relevance beyond Heusler alloys and represents an important step towards the implementation of cooling systems based on magnetocaloric materials.

1,233 citations

Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493