scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
23 Oct 2019-Nature
TL;DR: In this article, the authors reported the identification of the neutron-capture element strontium in a reanalysis of the kilonova AT2017gfo, which was found following the discovery of the Neutron-Star merger GW170817 by gravitational-wave detectors.
Abstract: Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.

260 citations

Book ChapterDOI
10 Jun 2008
TL;DR: A systematic comparison of the most prominent and successful people detectors is contributed and a new detector is proposed that outperforms the state-of-art on the INRIA person dataset by combining multiple features.
Abstract: Over the years a number of powerful people detectors have been proposed. While it is standard to test complete detectors on publicly available datasets, it is often unclear how the different components (e.g. features and classifiers) of the respective detectors compare. Therefore, this paper contributes a systematic comparison of the most prominent and successful people detectors. Based on this evaluation we also propose a new detector that outperforms the state-of-art on the INRIA person dataset by combining multiple features.

260 citations

Journal ArticleDOI
TL;DR: An outlook on detector combinations based on neuronal networks concludes this paper, which presents an overview about several approaches for controlling the step size for adaptive echo cancellation filters in hands-free telephones.

259 citations

Journal ArticleDOI
01 Mar 1998
TL;DR: It is shown how fuzzy logic approaches can be applied to process supervision and to fault diagnosis with approximate reasoning on observed symptoms and a review and classification of the potentials of fuzzy logic in process automation.
Abstract: The degree of vagueness of variables, process description, and automation functions is considered and is shown. Where quantitative and qualitative knowledge is available for design and information processing within automation systems. Fuzzy-rule-based systems with several levels of rules form the basis for different automation functions. Fuzzy control can be used in many ways, for normal and for special operating conditions. Experience with the design of fuzzy controllers in the basic level is summarized, as well as criteria for efficient applications. Different fuzzy control schemes are considered, including cascade, feedforward, variable structure, self-tuning, adaptive and quality control leading to hybrid classical/fuzzy control systems. It is then shown how fuzzy logic approaches can be applied to process supervision and to fault diagnosis with approximate reasoning on observed symptoms. Based on the properties of fuzzy logic approaches the contribution gives a review and classification of the potentials of fuzzy logic in process automation.

259 citations

Proceedings ArticleDOI
29 May 2018
TL;DR: Chameleon as mentioned in this paper is a hybrid mixed protocol for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs, but does not support signed fixed-point numbers.
Abstract: We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring $\mathbbZ _2^l $ using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively.

258 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493