scispace - formally typeset
Search or ask a question
Institution

Tehran University of Medical Sciences

EducationTehran, Iran
About: Tehran University of Medical Sciences is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Population & Medicine. The organization has 35661 authors who have published 57234 publications receiving 878523 citations. The organization is also known as: TUMS.


Papers
More filters
Journal ArticleDOI
TL;DR: All reported herbal therapies established in animal IBD models or used for managing human IBD are systematically reviewed and their possible mechanisms of action discussed.
Abstract: Because of potential adverse events and lack of effectiveness of standard therapies, the use of complementary and alternative medicines (CAM), particularly of herbal therapies, for inflammatory bowel disease (IBD) is increasing. Results from the use of herbal therapies for managing IBD are promising, and no serious adverse events have been reported from them. Herbal therapies show their benefit in managing IBD by different mechanisms such as immune system regulation, antioxidant activity, inhibition of leukotriene B4, inhibition of nuclear factor-kappa B (NF-κB), and antiplatelet activity. In this paper, all reported herbal therapies established in animal IBD models or used for managing human IBD are systematically reviewed and their possible mechanisms of action discussed. Conducting clinical trials with high quality and validity (randomized, double blinded, controlled, on a large number of patients) to obtain more conclusive results about the use of herbal therapies in IBD is recommended.

129 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in the design and application of SF-based scaffolds for bone regeneration are discussed.

129 citations

Journal ArticleDOI
TL;DR: The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous and synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as anilines from water and wastewater.
Abstract: In this study, powder activated carbon (PAC) and magnetic nanoparticles of iron (III) oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs) as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r2 > 0.98 and r2 > 0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH = 6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater.

129 citations

Journal ArticleDOI
TL;DR: This review summarized current therapeutic strategies based on stem cells for cardiovascular diseases and indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases.
Abstract: Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95-104, 2018. © 2017 Wiley Periodicals, Inc.

129 citations

Journal ArticleDOI
TL;DR: The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients to provide efficacious and targeted medicines for the management of VH.
Abstract: Irritable bowel syndrome (IBS) is the most common disorder referred to gastroenterologists and is characterized by altered bowel habits, abdominal pain, and bloating. Visceral hypersensitivity (VH) is a multifactorial process that may occur within the peripheral or central nervous systems and plays a principal role in the etiology of IBS symptoms. The pharmacological studies on selective drugs based on targeting specific ligands can provide novel therapies for modulation of persistent visceral hyperalgesia. The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients. There are a wide range of mediators and receptors participating in visceral pain perception amongst which substances targeting afferent receptors are attractive sources of novel drugs. Novel therapeutic targets for the management of VH include compounds which alter gut-brain pathways and local neuroimmune pathways. Molecular mediators and receptors participating in pain perception and visceroperception include histamine-1 receptors, serotonin (5-hydrodytryptamine) receptors, transient receptor potential vanilloid type I, tachykinins ligands, opioid receptors, voltage-gated channels, tyrosine receptor kinase receptors, protease-activated receptors, adrenergic system ligands, cannabinoid receptors, sex hormones, and glutamate receptors which are discussed in the current review. Moreover, several plant-derived natural compounds with potential to alleviate VH in IBS have been highlighted. VH has an important role in the pathology and severity of complications in IBS. Therefore, managing VH can remarkably modulate the symptoms of IBS. More preclinical and clinical investigations are needed to provide efficacious and targeted medicines for the management of VH.

129 citations


Authors

Showing all 35946 results

NameH-indexPapersCitations
Graeme J. Hankey137844143373
Paul D.P. Pharoah13079471338
Jerome Ritz12064447987
Reza Malekzadeh118900139272
Robert N. Weinreb117112459101
Javad Parvizi11196951075
Omid C. Farokhzad11032964226
Ali Mohammadi106114954596
Alexander R. Vaccaro102117939346
John R. Speakman9566734484
Philip J. Devereaux94443110428
Rafael Lozano94265126513
Mohammad Abdollahi90104535531
Ingmar Skoog8945828998
Morteza Mahmoudi8333426229
Network Information
Related Institutions (5)
Mashhad University of Medical Sciences
18.7K papers, 252.5K citations

97% related

Isfahan University of Medical Sciences
19.5K papers, 248.6K citations

95% related

Tarbiat Modares University
32.6K papers, 526.3K citations

89% related

Shahid Beheshti University
21K papers, 293.7K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023105
2022525
20216,042
20206,181
20195,322
20184,885