scispace - formally typeset
Search or ask a question
Institution

Texas A&M University

EducationCollege Station, Texas, United States
About: Texas A&M University is a education organization based out in College Station, Texas, United States. It is known for research contribution in the topics: Population & Finite element method. The organization has 72169 authors who have published 164372 publications receiving 5764236 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present multilevel research on bribery, national identity, team boundary spanning, professional role identity, organizational citizenship, interorganizational exchanges, and divestitures.
Abstract: Most management problems involve multilevel phenomena, yet most management research uses a single level of analysis. A micro or a macro lens alone yields incomplete understanding at either level. Multilevel research addresses the levels of theory, measurement, and analysis required to fully examine research questions. This forum presents multilevel research on bribery, national identity, team boundary spanning, professional role identity, organizational citizenship, interorganizational exchanges, and divestitures. To enrich the impact of future management research, we recommend (1) applying multilevel designs to existing models (2) considering bottom-up effects, (3) collaborating across disciplines on multidisciplinary topics, and (4) addressing major real-world problems via multilevel approaches.

1,002 citations

Journal ArticleDOI
TL;DR: A multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC demonstrates that these assays can be highly reproducible within and across laboratories and instrument platforms.
Abstract: Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low mug/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.

997 citations

Journal ArticleDOI
TL;DR: In this paper, a microstructure-dependent Timoshenko beam model is developed using a variational formulation, which is based on a modified couple stress theory and Hamilton's principle.
Abstract: A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli–Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli–Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.

995 citations

Journal ArticleDOI
07 Nov 2003-Science
TL;DR: Evidence is presented to suggest that variability of rainfall in the Sahel results from the response of the African summer monsoon to oceanic forcing, amplified by land-atmosphere interaction.
Abstract: We present evidence, based on an ensemble of integrations with NSIPP1 (version 1 of the atmospheric general circulation model developed at NASA's Goddard Space Flight Center in the framework of the Seasonal-to-Interannual Prediction Project) forced only by the observed record of sea surface temperature from 1930 to 2000, to suggest that variability of rainfall in the Sahel results from the response of the African summer monsoon to oceanic forcing, amplified by land-atmosphere interaction. The recent drying trend in the semiarid Sahel is attributed to warmer-than-average low-latitude waters around Africa, which, by favoring the establishment of deep convection over the ocean, weaken the continental convergence associated with the monsoon and engender widespread drought from Senegal to Ethiopia.

994 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to summarize and synthesize information regarding the cellular mechanism(s) underlying the myogenic response in blood vessels, with particular emphasis on arterioles.
Abstract: The vascular myogenic response refers to the acute reaction of a blood vessel to a change in transmural pressure. This response is critically important for the development of resting vascular tone, upon which other control mechanisms exert vasodilator and vasoconstrictor influences. The purpose of this review is to summarize and synthesize information regarding the cellular mechanism(s) underlying the myogenic response in blood vessels, with particular emphasis on arterioles. When necessary, experiments performed on larger blood vessels, visceral smooth muscle, and even striated muscle are cited. Mechanical aspects of myogenic behavior are discussed first, followed by electromechanical coupling mechanisms. Next, mechanotransduction by membrane-bound enzymes and involvement of second messengers, including calcium, are discussed. After this, the roles of the extracellular matrix, integrins, and the smooth muscle cytoskeleton are reviewed, with emphasis on short-term signaling mechanisms. Finally, suggestions are offered for possible future studies.

994 citations


Authors

Showing all 72708 results

NameH-indexPapersCitations
Yi Chen2174342293080
Scott M. Grundy187841231821
Evan E. Eichler170567150409
Yang Yang1642704144071
Martin Karplus163831138492
Robert Stone1601756167901
Philip Cohen154555110856
Claude Bouchard1531076115307
Jongmin Lee1502257134772
Zhenwei Yang150956109344
Vivek Sharma1503030136228
Frede Blaabjerg1472161112017
Steven L. Salzberg147407231756
Mikhail D. Lukin14660681034
John F. Hartwig14571466472
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

Pennsylvania State University
196.8K papers, 8.3M citations

97% related

University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

University of Texas at Austin
206.2K papers, 9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023211
2022938
20218,664
20208,925
20198,426