scispace - formally typeset
Search or ask a question
Institution

Texas Medical Center

HealthcareHouston, Texas, United States
About: Texas Medical Center is a healthcare organization based out in Houston, Texas, United States. It is known for research contribution in the topics: Population & Stroke. The organization has 2845 authors who have published 2394 publications receiving 79426 citations.
Topics: Population, Stroke, Cancer, Transplantation, Gene


Papers
More filters
Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods and demonstrated the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing, which is the first genome sequenced by next-generation technologies.
Abstract: Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure, which involves no cloning of the genomic DNA, makes use of the latest 454 parallel sequencing instrument. The sequence cost less than US$1 million (and a mere two months) to produce, compared to the approximately US$100 million reported for sequencing Craig Venter's genome by traditional methods. Still a major undertaking, but another step towards the goal of 'personalized genomes' and 'personalized medicine'. The DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels is reported. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome1, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual2 by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’.

1,879 citations

Journal ArticleDOI
TL;DR: The 2012 International Tuberous Sclerosis Complex Diagnostic Criteria provide current, updated means using best available evidence to establish diagnosis of tuberous sclerosis complex in affected individuals.

1,150 citations

Journal ArticleDOI
19 Feb 2003-JAMA
TL;DR: Bivalirudin with provisional Gp IIb/IIIa blockade is statistically not inferior to heparin plus planned Gp IIIa blockade during contemporary PCI with regard to suppression of acute ischemic end points and is associated with less bleeding.
Abstract: ContextThe direct thrombin inhibitor bivalirudin has been associated with better efficacy and less bleeding than heparin during coronary balloon angioplasty but has not been widely tested during contemporary percutaneous coronary intervention (PCI).ObjectiveTo determine the efficacy of bivalirudin, with glycoprotein IIb/IIIa (Gp IIb/IIIa) inhibition on a provisional basis for complications during PCI, compared with heparin plus planned Gp IIb/IIIa blockade with regard to protection from periprocedural ischemic and hemorrhagic complications.Design, Setting, and ParticipantsThe Randomized Evaluation in PCI Linking Angiomax to Reduced Clinical Events (REPLACE)–2 trial, a randomized, double-blind, active-controlled trial conducted among 6010 patients undergoing urgent or elective PCI at 233 community or referral hospitals in 9 countries from October 2001 through August 2002.InterventionsPatients were randomly assigned to receive intravenous bivalirudin (0.75-mg/kg bolus plus 1.75 mg/kg per hour for the duration of PCI), with provisional Gp IIb/IIIa inhibition (n = 2999), or heparin (65-U/kg bolus) with planned Gp IIb/IIIa inhibition (abciximab or eptifibatide) (n = 3011). Both groups received daily aspirin and a thienopyridine for at least 30 days after PCI.Main Outcome MeasuresThe primary composite end point was 30-day incidence of death, myocardial infarction, urgent repeat revascularization, or in-hospital major bleeding; the secondary composite end point was 30-day incidence of death, myocardial infarction, or urgent repeat revascularization.ResultsProvisional Gp IIb/IIIa blockade was administered to 7.2% of patients in the bivalirudin group. By 30 days, the primary composite end point had occurred among 9.2% of patients in the bivalirudin group vs 10.0% of patients in the heparin-plus-Gp IIb/IIIa group (odds ratio, 0.92; 95% confidence interval, 0.77-1.09; P = .32). The secondary composite end point occurred in 7.6% of patients in the bivalirudin vs 7.1% of patients in the heparin-plus-Gp IIb/IIIa groups (odds ratio, 1.09; 95% confidence interval 0.90-1.32; P = .40). Prespecified statistical criteria for noninferiority to heparin plus Gp IIb/IIIa were satisfied for both end points. In-hospital major bleeding rates were significantly reduced by bivalirudin (2.4% vs 4.1%; P<.001).ConclusionsBivalirudin with provisional Gp IIb/IIIa blockade is statistically not inferior to heparin plus planned Gp IIb/IIIa blockade during contemporary PCI with regard to suppression of acute ischemic end points and is associated with less bleeding.

1,148 citations

Journal ArticleDOI
TL;DR: The discovery of submicroscopic copy-number variations (CNVs) present in the authors' genomes has changed dramatically their perspective on DNA structural variation and disease and it is now thought that CNVs encompass more total nucleotides and arise more frequently than SNPs.
Abstract: During the last quarter of the twentieth century, our knowledge about human genetic variation was limited mainly to the heterochromatin polymorphisms, large enough to be visible in the light microscope, and the single nucleotide polymorphisms (SNPs) identified by traditional PCR-based DNA sequencing. In the past five years, the rapid development and expanded use of microarray technologies, including oligonucleotide array comparative genomic hybridization and SNP genotyping arrays, as well as next-generation sequencing with “paired-end” methods, has enabled a whole-genome analysis with essentially unlimited resolution. The discovery of submicroscopic copy-number variations (CNVs) present in our genomes has changed dramatically our perspective on DNA structural variation and disease. It is now thought that CNVs encompass more total nucleotides and arise more frequently than SNPs. CNVs, to a larger extent than SNPs, have been shown to be responsible for human evolution, genetic diversity between individuals,...

1,121 citations

Journal ArticleDOI
TL;DR: Copy number variation, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution and appear much higher for CNVs than for SNPs.
Abstract: Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution.

1,100 citations


Authors

Showing all 2878 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Scott M. Grundy187841231821
Joseph Jankovic153114693840
Geoffrey Burnstock141148899525
George Perry13992377721
David Y. Graham138104780886
James R. Lupski13684474256
Savio L. C. Woo13578562270
Henry T. Lynch13392586270
Joseph P. Broderick13050472779
Huda Y. Zoghbi12746365169
Paul M. Vanhoutte12786862177
Meletios A. Dimopoulos122137171871
John B. Holcomb12073353760
John S. Mattick11636764315
Network Information
Related Institutions (5)
University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

93% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

93% related

Baylor College of Medicine
94.8K papers, 5M citations

93% related

Emory University
122.4K papers, 6M citations

92% related

University of California, San Francisco
186.2K papers, 12M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202323
202222
202198
202091
201968
201865