scispace - formally typeset
Search or ask a question
Institution

Thapar University

EducationPatiāla, Punjab, India
About: Thapar University is a education organization based out in Patiāla, Punjab, India. It is known for research contribution in the topics: Cloud computing & Fuzzy logic. The organization has 2944 authors who have published 8558 publications receiving 130392 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of literature based on optimization of the catalyst performance varying various parameters like type of active metal, support, promoters, and catalyst synthesis procedure has been cited.
Abstract: Dry (CO2) reforming of methane with its commercial application of syngas production also serves in utilization of greenhouse gases like carbon dioxide and methane. Though the process is well studied, still, there are areas that are being explored in optimizing the process. One of the key areas of research is enhancing the activity and stability of the catalysts used in the reforming reactions. Activity of catalyst depends upon particle size, dispersion on support, support type, synthesis method, etc., whereas deactivation of catalyst is due to carbon deposition and sintering of metal precursor. With noble metals like Rh, Ru, Pt, and Pt providing more stability but are not economical, commercialization of dry reforming process has been achieved using Ni-based catalysts. Literature based on optimization of the catalyst performance varying various parameters like type of active metal, support, promoters, and catalyst synthesis procedure has been cited in this review. Review also extends towards various structured catalysts like foams, zeolites, and their performance-enhancing characteristics. With active metals like Ni showing excellent dispersion on well-structured supports like layered double hydroxides; enhanced performance by addition of a second metal usually a noble metal; use of promoters like lanthanides, which induce gasification of carbon species, thus inhibiting deactivation; and methods of introducing promoters, such as controlled adsorption, these catalysts can serve as strong candidates in commercial applications.

51 citations

Journal ArticleDOI
TL;DR: The formation mechanism of carbon coated Mo2C nano particles has been predicted based on the XRD, TG/DTA & DTG and microstructural results and morphological studies shows that the particles have partially spherical/faceted shape, with carbon coated having wide particle size distribution.
Abstract: Carbon coated nano molybdenum carbide (Mo2C) has been synthesized at 800 °C through single step reduction route using molybdenum trioxide (MoO3) as a precursor, polypropylene (P.P) as a carbon source and magnesium (Mg) as a catalyst in an autoclave. The synthesized samples were characterized by X-ray diffraction (XRD), thermal analysis techniques (TG/DTA/DTG), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Williamson- Hall (W-H) analysis has been done to estimate various parameters like strain, stress and strain energy density. Multi-stage kinetic analysis of the product phase has been studied to establish the nature of the thermal decomposition. Coats-Redfern method applied to determine the mechanism involved in the decomposition of the product phase shows that initial and final stage follow F1 mechanism whereas middle stage follow F3 mechanism. The activation energy (E a) and pre-exponential factor (A) has also been determined. The morphological studies shows that the particles have partially spherical/faceted shape, with carbon coated having wide particle size distribution. The surface chemistry and surface area analysis were studied by X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmet-Teller (BET), respectively. The formation mechanism of carbon coated Mo2C nano particles has been predicted based on the XRD, TG/DTA & DTG and microstructural results.

51 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic dye degradation behavior of a narrow bandgap chalcogenide-based antimony sulfide (Sb2S3) semiconductor and a reduced graphene oxide (reduced graphene oxide) based nanocomposite prepared by a facile hydrothermal method was examined.

51 citations

Journal ArticleDOI
TL;DR: The proposed Intra and Inter Cluster Communication for data aggregation in UWSN reduces the average energy consumption and end-to-end delay, thereby improving the packet delivery ratio and the main strength of the paper is to provide an optimal selection for CH.
Abstract: Underwater Wireless Sensor Networks (UWSNs) consume a significant amount of energy because of high transmission power and lengthy data packet transmission time. Sensors of UWSNs, which perform numerous tasks like target tracking, intrusion detection etc. can preserve energy and attain longer network life time by appropriate selection of cluster head (CH), cluster size (CS), and routing scheme. In order to achieve this, an Intra and Inter Cluster Communication (IICC) for data aggregation in UWSN have been proposed here. In our approach, the CH selection and CS are determined by using fuzzy logic. The main strength of our paper is to provide an optimal selection for CH as well as optimal intra and inter cluster communications based on energy and multiple paths. Minimum Average Routing Path Clustering Protocol method is implemented for intra-clustering communication in the network. Hierarchical Multi-path Routing-LEACH method is implemented for inter-cluster communication in the network. Experimental simulation shows that IICC improves the performance of UWSN in terms of end-to-end packet delay, energy consumption and packet delivery ratio. The proposed approach is adaptive in nature as it reduces the average energy consumption and end-to-end delay, thereby improving the packet delivery ratio.

51 citations

Journal ArticleDOI
TL;DR: Zn1−xGdxO (x = 0, 2, 5, 10, 15) nanoparticles were synthesized by sol-gel method and analyzed for their structural, morphological, optical and magnetic properties as mentioned in this paper.
Abstract: Zn1−xGdxO (x = 0, 2, 5, 10, 15 %) nanoparticles were synthesised by sol–gel method and analysed for their structural, morphological, optical and magnetic properties. X-ray diffraction confirms formation of hexagonal wurtzite single phase of the synthesized nanoparticles. Transmission electron microscopy shows that they have spherical morphology; UV–Vis spectroscopy shows that they undergo red shift; energy dispersive technique reveals that they have the prerequisite elements in the stoichiometry ratio; and, vibrating sample magnetometer depicts that they have room temperature ferromagnetism, which, further, enhances upon Gd-doping.

51 citations


Authors

Showing all 3035 results

NameH-indexPapersCitations
Gaurav Sharma82124431482
Vinod Kumar7781526882
Neeraj Kumar7658718575
Ashish Sharma7590920460
Dinesh Kumar69133324342
Pawan Kumar6454715708
Harish Garg6131111491
Rafat Siddique5818311133
Surya Prakash Singh5573612989
Abhijit Mukherjee5537810196
Ajay Kumar5380912181
Soumen Basu452477888
Sudeep Tanwar432635402
Yosi Shacham-Diamand422876463
Rupinder Singh424587452
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

96% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

95% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

94% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

94% related

Anna University
19.9K papers, 312.6K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022149
20211,237
20201,083
2019962
2018933