scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Computer science. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.
Topics: Population, Computer science, Cancer, Medicine, China


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examine a potential benefit associated with the initiation of voluntary disclosure of corporate social responsibility (CSR) activities: a reduction in firms' cost of equity capital.
Abstract: We examine a potential benefit associated with the initiation of voluntary disclosure of corporate social responsibility (CSR) activities: a reduction in firms’ cost of equity capital. We find that firms with a high cost of equity capital in the previous year tend to initiate disclosure of CSR activities in the current year and that initiating firms with superior social responsibility performance enjoy a subsequent reduction in the cost of equity capital. Further, initiating firms with superior social responsibility performance attract dedicated institutional investors and analyst coverage. Moreover, these analysts achieve lower absolute forecast errors and dispersion. Finally, we find that firms exploit the benefit of a lower cost of equity capital associated with the initiation of CSR disclosure. Initiating firms are more likely than non-initiating firms to raise equity capital following the initiations and among firms raising equity capital, initiating firms raise a significantly larger amount than do non-initiating firms.

2,153 citations

Journal ArticleDOI
TL;DR: Examination of prevalence of, trends in, and risk and protective factors for suicidal behavior in the United States and cross-nationally revealed significant cross-national variability in the prevalence of suicidal behavior but consistency in age of onset, transition probabilities, and key risk factors.
Abstract: Suicidal behavior is a leading cause of injury and death worldwide. Information about the epidemiology of such behavior is important for policy-making and prevention. The authors reviewed government data on suicide and suicidal behavior and conducted a systematic review of studies on the epidemiology of suicide published from 1997 to 2007. The authors' aims were to examine the prevalence of, trends in, and risk and protective factors for suicidal behavior in the United States and cross-nationally. The data revealed significant cross-national variability in the prevalence of suicidal behavior but consistency in age of onset, transition probabilities, and key risk factors. Suicide is more prevalent among men, whereas nonfatal suicidal behaviors are more prevalent among women and persons who are young, are unmarried, or have a psychiatric disorder. Despite an increase in the treatment of suicidal persons over the past decade, incidence rates of suicidal behavior have remained largely unchanged. Most epidemiologic research on suicidal behavior has focused on patterns and correlates of prevalence. The next generation of studies must examine synergistic effects among modifiable risk and protective factors. New studies must incorporate recent advances in survey methods and clinical assessment. Results should be used in ongoing efforts to decrease the significant loss of life caused by suicidal behavior.

2,147 citations

Journal ArticleDOI
12 Dec 2017-JAMA
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Abstract: Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

2,116 citations

Book ChapterDOI
08 Oct 2016
TL;DR: Zhang et al. as mentioned in this paper proposed a compact hourglass-shape CNN structure for faster and better image super-resolution, which can achieve real-time performance on a generic CPU while still maintaining good performance.
Abstract: As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) [1, 2] has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accelerating the current SRCNN, and propose a compact hourglass-shape CNN structure for faster and better SR. We re-design the SRCNN structure mainly in three aspects. First, we introduce a deconvolution layer at the end of the network, then the mapping is learned directly from the original low-resolution image (without interpolation) to the high-resolution one. Second, we reformulate the mapping layer by shrinking the input feature dimension before mapping and expanding back afterwards. Third, we adopt smaller filter sizes but more mapping layers. The proposed model achieves a speed up of more than 40 times with even superior restoration quality. Further, we present the parameter settings that can achieve real-time performance on a generic CPU while still maintaining good performance. A corresponding transfer strategy is also proposed for fast training and testing across different upscaling factors.

2,090 citations

Journal ArticleDOI
TL;DR: In this article, a novel and simple method for preparing highly photoactive nanocrystalline F-doped TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in a mixed NH4F−H2O solution.
Abstract: A novel and simple method for preparing highly photoactive nanocrystalline F--doped TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in a mixed NH4F−H2O solution. The prepared F--doped TiO2 powders were characterized by differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV−vis absorption spectroscopy, photoluminescence spectra (PL), transmission electron microscopy (TEM), and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results showed that the crystallinity of anatase was improved upon F- doping. Moreover, fluoride ions not only suppressed the formation of brookite phase but also prevented phase transition of anatase to rutile. The F--doped TiO2 samples exhibited stronger absorption in the UV−visible range with a red shift in the band gap transition. The photocatalytic activity of F--doped TiO2 powders prep...

2,074 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022904
20217,888
20207,245
20195,968
20185,372