scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2018
TL;DR: A novel recurrent residual refinement network (R^3Net) equipped with residual refinement blocks (RRBs) to more accurately detect salient regions of an input image that outperforms competitors in all the benchmark datasets.
Abstract: Saliency detection is a fundamental yet challenging task in computer vision, aiming at highlighting the most visually distinctive objects in an image. We propose a novel recurrent residual refinement network (R^3Net) equipped with residual refinement blocks (RRBs) to more accurately detect salient regions of an input image. Our RRBs learn the residual between the intermediate saliency prediction and the ground truth by alternatively leveraging the low-level integrated features and the high-level integrated features of a fully convolutional network (FCN). While the low-level integrated features are capable of capturing more saliency details, the high-level integrated features can reduce non-salient regions in the intermediate prediction. Furthermore, the RRBs can obtain complementary saliency information of the intermediate prediction, and add the residual into the intermediate prediction to refine the saliency maps. We evaluate the proposed R^3Net on five widely-used saliency detection benchmarks by comparing it with 16 state-of-the-art saliency detectors. Experimental results show that our network outperforms our competitors in all the benchmark datasets.

402 citations

Posted Content
TL;DR: An efficient deep contour-aware network (DCAN) to solve this challenging problem under a unified multi-task learning framework and can be efficient when applied to large-scale histopathological data without resorting to additional steps to generate contours based on low-level cues for post-separating.
Abstract: The morphology of glands has been used routinely by pathologists to assess the malignancy degree of adenocarcinomas. Accurate segmentation of glands from histology images is a crucial step to obtain reliable morphological statistics for quantitative diagnosis. In this paper, we proposed an efficient deep contour-aware network (DCAN) to solve this challenging problem under a unified multi-task learning framework. In the proposed network, multi-level contextual features from the hierarchical architecture are explored with auxiliary supervision for accurate gland segmentation. When incorporated with multi-task regularization during the training, the discriminative capability of intermediate features can be further improved. Moreover, our network can not only output accurate probability maps of glands, but also depict clear contours simultaneously for separating clustered objects, which further boosts the gland segmentation performance. This unified framework can be efficient when applied to large-scale histopathological data without resorting to additional steps to generate contours based on low-level cues for post-separating. Our method won the 2015 MICCAI Gland Segmentation Challenge out of 13 competitive teams, surpassing all the other methods by a significant margin.

402 citations

Journal ArticleDOI
TL;DR: As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage.
Abstract: The kiwifruit is an economically and nutritionally important fruit crop with high vitamin C content. Here, the authors report the draft genome sequence of a heterozygous kiwifruit and through comparative genomic analysis provide valuable insight into kiwifruit evolution.

402 citations

Posted Content
TL;DR: Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to an optimal user selection algorithm with random resource allocation and a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
Abstract: In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.

401 citations

Journal ArticleDOI
TL;DR: The proposed computer-aided diagnostic system for TB screening, which is ready for field deployment, achieves a performance that approaches the performance of human experts.
Abstract: Tuberculosis is a major health threat in many regions of the world. Opportunistic infections in immunocompromised HIV/AIDS patients and multi-drug-resistant bacterial strains have exacerbated the problem, while diagnosing tuberculosis still remains a challenge. When left undiagnosed and thus untreated, mortality rates of patients with tuberculosis are high. Standard diagnostics still rely on methods developed in the last century. They are slow and often unreliable. In an effort to reduce the burden of the disease, this paper presents our automated approach for detecting tuberculosis in conventional posteroanterior chest radiographs. We first extract the lung region using a graph cut segmentation method. For this lung region, we compute a set of texture and shape features, which enable the X-rays to be classified as normal or abnormal using a binary classifier. We measure the performance of our system on two datasets: a set collected by the tuberculosis control program of our local county's health department in the United States, and a set collected by Shenzhen Hospital, China. The proposed computer-aided diagnostic system for TB screening, which is ready for field deployment, achieves a performance that approaches the performance of human experts. We achieve an area under the ROC curve (AUC) of 87% (78.3% accuracy) for the first set, and an AUC of 90% (84% accuracy) for the second set. For the first set, we compare our system performance with the performance of radiologists. When trying not to miss any positive cases, radiologists achieve an accuracy of about 82% on this set, and their false positive rate is about half of our system's rate.

401 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022903
20217,888
20207,245
20195,968
20185,372