scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.


Papers
More filters
Journal ArticleDOI
Bin Zhou1, James Bentham1, Mariachiara Di Cesare2, Honor Bixby1  +787 moreInstitutions (231)
TL;DR: The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries, and the contributions of changes in prevalence versus population growth and ageing to the increase.

1,573 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: The early outbreak data largely follows the exponential growth and indicates the potential of 2019-nCoV to cause outbreaks, as well as the impact of the variations in disease reporting rate, modelled through theonential growth.

1,561 citations

Journal ArticleDOI
TL;DR: This work proposes a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D Dense UNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation.
Abstract: Liver cancer is one of the leading causes of cancer death. To assist doctors in hepatocellular carcinoma diagnosis and treatment planning, an accurate and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, fully convolutional neural networks (FCNs), including 2-D and 3-D FCNs, serve as the backbone in many volumetric image segmentation. However, 2-D convolutions cannot fully leverage the spatial information along the third dimension while 3-D convolutions suffer from high computational cost and GPU memory consumption. To address these issues, we propose a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation. We formulate the learning process of the H-DenseUNet in an end-to-end manner, where the intra-slice representations and inter-slice features can be jointly optimized through a hybrid feature fusion layer. We extensively evaluated our method on the data set of the MICCAI 2017 Liver Tumor Segmentation Challenge and 3DIRCADb data set. Our method outperformed other state-of-the-arts on the segmentation results of tumors and achieved very competitive performance for liver segmentation even with a single model.

1,561 citations

Proceedings ArticleDOI
17 Oct 2005
TL;DR: This paper proposes a novel subspace learning algorithm called neighborhood preserving embedding (NPE), which aims at preserving the local neighborhood structure on the data manifold and is less sensitive to outliers than principal component analysis (PCA).
Abstract: Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood preserving embedding (NPE). Different from principal component analysis (PCA) which aims at preserving the global Euclidean structure, NPE aims at preserving the local neighborhood structure on the data manifold. Therefore, NPE is less sensitive to outliers than PCA. Also, comparing to the recently proposed manifold learning algorithms such as Isomap and locally linear embedding, NPE is defined everywhere, rather than only on the training data points. Furthermore, NPE may be conducted in the original space or in the reproducing kernel Hilbert space into which data points are mapped. This gives rise to kernel NPE. Several experiments on face database demonstrate the effectiveness of our algorithm

1,555 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022903
20217,888
20207,245
20195,968
20185,372