scispace - formally typeset
Search or ask a question
Institution

The Chinese University of Hong Kong

EducationHong Kong, China
About: The Chinese University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 43411 authors who have published 93672 publications receiving 3066651 citations.


Papers
More filters
Journal ArticleDOI
04 Mar 2021-Nature
TL;DR: The GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2244 critically ill Covid-19 patients from 208 UK intensive care units is reported, finding evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease.
Abstract: Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10−8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10−8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10−12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10−8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte–macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice. A genome-wide association study of critically ill patients with COVID-19 identifies genetic signals that relate to important host antiviral defence mechanisms and mediators of inflammatory organ damage that may be targeted by repurposing drug treatments.

941 citations

Book ChapterDOI
08 Sep 2018
TL;DR: The point-wise spatial attention network (PSANet) is proposed to relax the local neighborhood constraint and achieves top performance on various competitive scene parsing datasets, including ADE20K, PASCAL VOC 2012 and Cityscapes, demonstrating its effectiveness and generality.
Abstract: We notice information flow in convolutional neural networks is restricted inside local neighborhood regions due to the physical design of convolutional filters, which limits the overall understanding of complex scenes. In this paper, we propose the point-wise spatial attention network (PSANet) to relax the local neighborhood constraint. Each position on the feature map is connected to all the other ones through a self-adaptively learned attention mask. Moreover, information propagation in bi-direction for scene parsing is enabled. Information at other positions can be collected to help the prediction of the current position and vice versa, information at the current position can be distributed to assist the prediction of other ones. Our proposed approach achieves top performance on various competitive scene parsing datasets, including ADE20K, PASCAL VOC 2012 and Cityscapes, demonstrating its effectiveness and generality.

940 citations

Journal ArticleDOI
TL;DR: The epidemiology of SARS in Hong Kong was assessed and public-health interventions included encouragement to report to hospital rapidly after the onset of clinical symptoms, contact tracing for confirmed and suspected cases, and quarantining, monitoring, and restricting the travel of contacts.

938 citations

Journal ArticleDOI
TL;DR: Using the Lyapunov theorem in functional analysis, this work rigorously proves a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the continuous (Lebesgue integral) formulation of the discretized version of this nonconvex problem.
Abstract: Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectral densities dynamically in response to physical channel conditions. Due to co-channel interference, the achievable data rate of each user depends on not only the power spectral density of its own, but also those of others in the system. Given any channel condition and assuming Gaussian signaling, we consider the problem to jointly determine all users' power spectral densities so as to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. For the discretized version of this nonconvex problem, we characterize its computational complexity by establishing the NP-hardness under various practical settings, and identify subclasses of the problem that are solvable in polynomial time. Moreover, we consider the Lagrangian dual relaxation of this nonconvex problem. Using the Lyapunov theorem in functional analysis, we rigorously prove a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the continuous (Lebesgue integral) formulation. Moreover, we show that the duality gap for the discrete formulation vanishes asymptotically as the size of discretization decreases to zero.

938 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a current-induced spin Hall spin torque to demonstrate the skyrmion Hall effect, and the resultant SKRIMMion accumulation, by driving SKyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-mode.
Abstract: The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultant skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. The experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection. Experiments show that when driven by electric currents, magnetic skyrmions experience transverse motion due to their topological charge — similar to the conventional Hall effect experienced by charged particles in a perpendicular magnetic field.

938 citations


Authors

Showing all 43993 results

NameH-indexPapersCitations
Michael Marmot1931147170338
Jing Wang1844046202769
Jiaguo Yu178730113300
Yang Yang1712644153049
Mark Gerstein168751149578
Gang Chen1673372149819
Jun Wang1661093141621
Jean Louis Vincent1611667163721
Wei Zheng1511929120209
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Kypros H. Nicolaides147130287091
Thomas S. Huang1461299101564
Galen D. Stucky144958101796
Joseph J.Y. Sung142124092035
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

92% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

University of Pittsburgh
201K papers, 9.6M citations

92% related

University of Michigan
342.3K papers, 17.6M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023212
2022903
20217,888
20207,245
20195,968
20185,372