scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an extensive geochemical survey was carried out to measure concentrations of elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn) using a micro-XRF.

11 citations

Journal ArticleDOI
TL;DR: In this article, three different cloud condensation nuclei (CCN) schemes were applied to study the variability of climate predictions from aerosol-cloud interactions using the ECHAM5/MESSy Atmospheric Chemistry-climate model (EMAC).

11 citations

Posted ContentDOI
TL;DR: In this article, numerical simulations using a two-dimensional Detailed Cloud Resolving Model (DCRM) were carried out to investigate the dust-cloud interactions in the tropical deep convection, focusing on the dust role as ice nuclei.
Abstract: . Observational studies suggest that the Saharan Air Layer (SAL), an elevated layer (850–500 hPa) of Saharan air and mineral dust, has strong impacts on the microphysical as well as dynamical properties of tropical deep convective cloud systems along its track. In this case study, numerical simulations using a two-dimensional Detailed Cloud Resolving Model (DCRM) were carried out to investigate the dust-cloud interactions in the tropical deep convection, focusing on the dust role as Ice Nuclei (IN). The simulations showed that mineral dust considerably enhanced heterogeneous nucleation and freezing at temperatures warmer than −40 °C, resulting in more ice hydrometeors number concentration and reduced precipitating size of ice particles. Because of the lower in the saturation over ice as well as more droplet freezing, total latent heating increased, and consequently the updraft velocity was stronger. On the other hand, the increased ice deposition consumed more water vapor at middle troposphere, which induces a competition for water vapor between heterogeneous and homogeneous freezing and nucleation. As a result, dust suppressed the homogeneous droplet freezing and nucleation due to the heterogeneous droplet freezing and the weakened transport of water vapor at lower stratosphere, respectively. These effects led to decreased number concentration of ice cloud particles in the upper troposphere, and consequently lowered the cloud top height during the stratus precipitating stage. Acting as IN, mineral dust also influenced precipitation in deep convection. It initiated earlier the collection because dust-related heterogeneous nucleation and freezing at middle troposphere occur earlier than homogeneous nucleation at higher altitudes. Nevertheless, the convective precipitation was suppressed by reduced collection of large graupel particles and insufficient fallout related to decreased sizes of precipitating ice hydrometeors. On the contrary, dust increased the precipitation in stratiform precipitation through deposition growth. Overall, the comprehensive effects of mineral dust suppressed the precipitation by up to 22%.

11 citations

Journal ArticleDOI
TL;DR: The interdisciplinary project "Between Land and Sea" combines geological, geomorphological and paleo-environmental approaches to identify archaeological remains of the Chekka region (Lebanon) as mentioned in this paper.
Abstract: The interdisciplinary project “Between Land and Sea” combines geological, geomorphological and paleo-environmental approaches to identify archaeological remains of the Chekka region (Lebanon). In order to record the topography of this area, the first ever scientific airborne LiDAR data acquisition in Lebanon was conducted in autumn 2018. This work describes not only the acquisition and processing of the LiDAR data, but also the attempt to derive possible archaeological sites from the generated elevation model based on methods for spatial analysis. Using an “inverted mound” (iMound) algorithm, areas of possible settlement structures could be identified, which were classified regarding their probability of a possible ancient site using a deductive predictive model. A preliminary validation of some of the detected favoured areas using high-resolution aerial images has shown that the methods applied can provide hints to previously undiscovered sites. It was possible to identify probable ancient wall remains at several detected locations. In addition, least-cost path analyses were performed to reconstruct possible trade and transport routes from the Lebanon Mountains to the Mediterranean coast. The combination of the results of the iMound detection and classification as well as the calculated path system could point to the strategic location of the modern village of Kfar Hazir as a kind of traffic junction. Moreover, reconstructed main transport routes provide indications of heavily frequented roads and may form the basis for further investigations. To validate the results, upcoming field surveys will be realized on site.

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the MOGUNTIA chemical mechanism in the TM5-MP model and compare it with the modified CB05 chemical mechanism, which includes a detailed representation of the light hydrocarbons (C1-C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics.
Abstract: . This work documents and evaluates the tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. Compared to the modified CB05 chemical mechanism previously used in the model, the MOGUNTIA includes a detailed representation of the light hydrocarbons (C1-C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics. Another feature implemented in TM5-MP for this work is the use of the Rosenbrock solver in the chemistry code, which can replace the classical Euler Backward Integration method of the model. Global budgets of ozone (O3), carbon monoxide (CO), hydroxyl radicals (OH), nitrogen oxides (NOX) and volatile organic compounds (VOCs) are here analyzed and their mixing ratios are compared with a series of surface, aircraft and satellite observations for the year 2006. Both mechanisms appear to be able to represent satisfactorily observed mixing ratios of important trace gases, with the MOGUNTIA chemistry configuration yielding lower biases compared to measurements in most of the cases. However, the two chemical mechanisms fail to reproduce the observed mixing ratios of light VOCs, indicating insufficient primary emission source strengths, too weak vertical mixing in the boundary layer, and/or a low bias in the secondary contribution of C2-C3 organics via VOC atmospheric oxidation. Relative computational memory and time requirements of the different model configurations are also compared and discussed. Overall, compared to other chemistry schemes in use in global CTMs, the MOGUNTIA scheme simulates a large suite of oxygenated VOCs that are observed in the atmosphere at significant levels and are involved in aerosol formation, expanding, thus, the applications of TM5-MP.

11 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111