scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Ganzeveld et al. as discussed by the authors analyzed the impact of land cover and land use changes on atmospheric chemistry and showed that the simulated impact depends on a consistent representation of emissions, deposition, and canopy interactions and their dependence on meteorological, hydrological, and biological drivers to account for compensating effects.
Abstract: annual soil NO emissions by ∼1.2 TgN yr −1 (9%), whereas isoprene emissions decrease by ∼50 TgC yr −1 (−12%). The analysis shows increases in simulated boundary layer ozone mixing ratios up to ∼9 ppbv and more than a doubling in hydroxyl radical concentrations over deforested areas in Africa. Small changes in global atmosphere‐biosphere fluxes of NOx and ozone point to compensating effects. Decreases in soil NO emissions in deforested regions are counteracted by a larger canopy release of NOx caused by reduced foliage uptake. Despite this decrease in foliage uptake, the ozone deposition flux does not decrease since surface layer mixing ratios increase because of a reduced oxidation of isoprene by ozone. Our study indicates that the simulated impact of land cover and land use changes on atmospheric chemistry depends on a consistent representation of emissions, deposition, and canopy interactions and their dependence on meteorological, hydrological, and biological drivers to account for these compensating effects. It results in negligible changes in the atmospheric oxidizing capacity and, consequently, in the lifetime of methane. Conversely, we expect a pronounced increase in oxidizing capacity as a consequence of anthropogenic emission increases. Citation: Ganzeveld, L., L. Bouwman, E. Stehfest, D. P. van Vuuren, B. Eickhout, and J. Lelieveld (2010), Impact of future land use and land cover changes on atmospheric chemistry‐climate interactions, J. Geophys. Res., 115, D23301,

106 citations

Journal ArticleDOI
TL;DR: In this paper, the potential changes for the mid-twenty-first century (2021-2050) are analyzed using a high-resolution regional climate model, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country.
Abstract: Climate changes in the Mediterranean region, related to a significant increase in temperature and changes in precipitation patterns, can potentially affect local economies. Agriculture and tourism are undoubtedly the most important economic sources for Greece and these may be more strongly affected by changing future climate conditions. Climate change and their various negative impacts on human life are also detected in their environment; hence this study deals with implications, caused by changing climate, in urban and forest areas. Potential changes for the mid-twenty-first century (2021–2050) are analysed using a high-resolution regional climate model. This paper presents relevant climatic indices, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country. The results provide insights into particular regions of the Greek territory that may undergo substantial impacts due to climate change. It is concluded that the duration of dry days is expected to increase in most of the studied agricultural regions. Winter precipitation generally decreases, whereas an increase in autumn precipitation is projected in most areas. Changing climate conditions associated with increased minimum temperatures (approximately 1.3°C) and decreased winter precipitation by 15% on average suggest that the risk for forest fires is intensified in the future. In urban areas, unpleasantly high temperatures during day and night will increase the feeling of discomfort in the citizens, while flash floods events are expected to occur more frequently. Another impact of climate change in urban regions is the increasing energy demand for cooling in summer. Finally, it was found that continental tourist areas of the Greek mainland will more often face heatwave episodes. In coastal regions, increased temperatures especially at night in combination with high levels of relative humidity can lead to conditions that are nothing less than uncomfortable for foreigners and the local population. In general, projected changes associated with temperature have a higher degree of confidence than those associated with precipitation.

105 citations

Journal ArticleDOI
TL;DR: In this paper, an intercomparison and evaluation of gridded temperature and precipitation data sets, based on observations in the Mediterranean and the Middle East region, is presented.
Abstract: [1] This paper presents an intercomparison and evaluation of gridded temperature and precipitation data sets, based on observations in the Mediterranean and the Middle East region. Using available global and regional data, we investigate the spatial and seasonal distributions of these two parameters, including uncertainties and trends for eight subregions that signify distinct climate regimes. All data sets represent the overall spatial features well though partly with biases. Using the seasonal means, standard deviations and cumulative density functions for the eight subregions, we identify outliers among the data sets. The correlations between data sets are high except for some regional data products. Desert areas such as Saudi Arabia and Libya-Egypt appear problematic due to their sparse station network. Similar upward trends of temperature and downward trends in precipitation are found for most of the region in all data sets, while differences appear in their magnitude and level of significance.

101 citations

Journal ArticleDOI
TL;DR: In this article, the authors compile and analyze monthly temperature and precipitation fields derived from regional climate model simulations performed over different CORDEX domains at a spatial resolution of 50 km and use a unique multi-model, multi-scenario, and multi-domain super-ensemble to update projected changes for the Mediterranean region.
Abstract: Observation and model-based studies have identified the Mediterranean region as one of the most prominent climate change “hot-spots.” Parts of this distinctive region are included in several Coordinated Regional Downscaling Experiment (CORDEX) domains such as those for Europe, Africa, the Mediterranean, and the Middle East/North Africa. In this study, we compile and analyze monthly temperature and precipitation fields derived from regional climate model simulations performed over different CORDEX domains at a spatial resolution of 50 km. This unique multi-model, multi-scenario, and multi-domain “super-ensemble” is used to update projected changes for the Mediterranean region. The statistical robustness and significance of the climate change signal is assessed. By considering information from more than one CORDEX domains, our analysis addresses an additional type of uncertainty that is often neglected and is related to the positioning of the regional climate model domain. CORDEX simulations suggest a general warming by the end of the century (between 1 and 5 °C with respect to the 1986–2005 reference period), which is expected to be strongest during summer (up to 7 °C). A general drying (between 10 and 40%) is also inferred for the Mediterranean. However, the projected precipitation change signal is less significant and less robust. The CORDEX ensemble corroborates the fact that the Mediterranean is already entering the 1.5 °C climate warming era. It is expected to reach 2 °C warming well within two decades, unless strong greenhouse gas concentration reductions are implemented. The southern part of the Mediterranean is expected to be impacted most strongly since the CORDEX ensemble suggests substantial combined warming and drying, particularly for pathways RCP4.5 and RCP8.5.

100 citations

Journal ArticleDOI
TL;DR: The gene for this hereditary form of distal spinal muscular atrophy, mainly affecting the upper limbs with a mean age of onset of 17 years, is mapped to chromosome 7p in a large Bulgarian family.
Abstract: An autosomal dominant distal form of spinal muscular atrophy mainly affecting the upper limbs with a mean age of onset of 17 years has been identified in a large Bulgarian family. Linkage of the above family to the spinal muscular atrophy type I, II and III locus on chromosome 5 has been excluded. In an attempt to map this disease gene we have analysed individuals of this family, with more than 140 microsatellite polymorphic markers of the human genome. A maximum lod score of 5.99 at theta = 0.007 has been obtained with locus D7S795. We have thus mapped the gene for this hereditary form of distal spinal muscular atrophy to chromosome 7p.

99 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111