scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that, after accounting for meteorological variations, lockdown events have reduced the population-weighted concentration of nitrogen dioxide and particulate matter levels by about 60% and 31% in 34 countries, with mixed effects on ozone.
Abstract: The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: -2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx chemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing "business as usual" air pollutant emissions from economic activities. Explore trends here: https://nina.earthengine.app/view/lockdown-pollution.

560 citations

Journal ArticleDOI
TL;DR: New data based on novel hazard ratio functions suggesting that the health impacts attributable to ambient air pollution in Europe are substantially higher than previously assumed, though subject to considerable uncertainty, imply that replacing fossil fuels by clean, renewable energy sources could substantially reduce the loss of life expectancy from air pollution.
Abstract: Aims Ambient air pollution is a major health risk, leading to respiratory and cardiovascular mortality. A recent Global Exposure Mortality Model, based on an unmatched number of cohort studies in many countries, provides new hazard ratio functions, calling for re-evaluation of the disease burden. Accordingly, we estimated excess cardiovascular mortality attributed to air pollution in Europe. Methods and results The new hazard ratio functions have been combined with ambient air pollution exposure data to estimate the impacts in Europe and the 28 countries of the European Union (EU-28). The annual excess mortality rate from ambient air pollution in Europe is 790 000 [95% confidence interval (95% CI) 645 000-934 000], and 659 000 (95% CI 537 000-775 000) in the EU-28. Between 40% and 80% are due to cardiovascular events, which dominate health outcomes. The upper limit includes events attributed to other non-communicable diseases, which are currently not specified. These estimates exceed recent analyses, such as the Global Burden of Disease for 2015, by more than a factor of two. We estimate that air pollution reduces the mean life expectancy in Europe by about 2.2 years with an annual, attributable per capita mortality rate in Europe of 133/100 000 per year. Conclusion We provide new data based on novel hazard ratio functions suggesting that the health impacts attributable to ambient air pollution in Europe are substantially higher than previously assumed, though subject to considerable uncertainty. Our results imply that replacing fossil fuels by clean, renewable energy sources could substantially reduce the loss of life expectancy from air pollution.

546 citations

Journal ArticleDOI
TL;DR: A review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects is provided in this paper.
Abstract: . Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook is provided as a guideline for future research, pointing out particularly critical issues such as: resolving discrepancies between top down and bottom up emissions estimates; assessing the processing and aging of the pollutant outflow; developing a better understanding of the observed elevated pollutant layers and their relationship to local sea breeze and large scale monsoon circulations; and determining the impacts of the pollutant outflow on the Asian monsoon meteorology and the regional hydrological cycle, in particular the mountain cryospheric reservoirs and the fresh water supply, which in turn directly impact the lives of over a billion inhabitants of southern Asia.

424 citations

Journal ArticleDOI
TL;DR: In this paper, the authors collected, analyzed and classified existing knowledge regarding the energy impact of urban heating to buildings and calculated preliminary indicators and impact figures, based on the analysis of the impact studies, they found that in average the cooling load of typical urban buildings is by 13% higher compared to similar buildings in rural areas.

422 citations

Journal ArticleDOI
TL;DR: It is concluded that to save millions of lives and restore aerosol-perturbed rainfall patterns, while limiting global warming to 2 °C, a rapid phaseout of fossil-fuel-related emissions and major reductions of other anthropogenic sources are needed.
Abstract: Anthropogenic greenhouse gases and aerosols are associated with climate change and human health risks. We used a global model to estimate the climate and public health outcomes attributable to fossil fuel use, indicating the potential benefits of a phaseout. We show that it can avoid an excess mortality rate of 3.61 (2.96-4.21) million per year from outdoor air pollution worldwide. This could be up to 5.55 (4.52-6.52) million per year by additionally controlling nonfossil anthropogenic sources. Globally, fossil-fuel-related emissions account for about 65% of the excess mortality, and 70% of the climate cooling by anthropogenic aerosols. The chemical influence of air pollution on aeolian dust contributes to the aerosol cooling. Because aerosols affect the hydrologic cycle, removing the anthropogenic emissions in the model increases rainfall by 10-70% over densely populated regions in India and 10-30% over northern China, and by 10-40% over Central America, West Africa, and the drought-prone Sahel, thus contributing to water and food security. Since aerosols mask the anthropogenic rise in global temperature, removing fossil-fuel-generated particles liberates 0.51(±0.03) °C and all pollution particles 0.73(±0.03) °C warming, reaching around 2 °C over North America and Northeast Asia. The steep temperature increase from removing aerosols can be moderated to about 0.36(±0.06) °C globally by the simultaneous reduction of tropospheric ozone and methane. We conclude that a rapid phaseout of fossil-fuel-related emissions and major reductions of other anthropogenic sources are needed to save millions of lives, restore aerosol-perturbed rainfall patterns, and limit global warming to 2 °C.

416 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111