scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of the filter-loading effect on the optical properties of the particles present in the filter matrix, especially on the black carbon particle coating.
Abstract: Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Angstrom exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Angstrom exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter-loading parameter result from ageing and coating during long-range transport. Our results show that the filter-loading parameter can be used as a proxy for determination of the particle coating, thus allowing for differentiation between local/fresh and transported/aged particles.

63 citations

Journal ArticleDOI
TL;DR: The Global Aerosol Synthesis and Science Project (GASSP) as mentioned in this paper aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to assess the uncertainty associated with comparing sparse point measurements with low-resolution models.
Abstract: The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.

63 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the costs and benefits of four NH3 emission abatement options for the compliance of the agricultural sector with the commitments of the European air quality regulatory framework.
Abstract: In Europe, ammonia (NH3) emissions strongly contribute to fine particulate matter (PM2.5) pollution and associated premature human mortality. The National Emission Ceilings Directive 2016/2284/EU has set an obligation for all European Union countries to reduce the NH3 emissions by 6%, relative to 2005, by 2020. This study aims to assess the costs and benefits of four NH3 emission abatement options for the compliance of the agricultural sector with the commitments of the European air quality regulatory framework. A regional atmospheric model (WRF/Chem) was used to assess the effects of regulating NH3 emissions reductions on PM2.5 concentrations over Europe. Non-market valuation techniques (value of statistical life) were used to monetize the associated health outcomes. We calculated that 16 out of the 28 EU member states exceeded their 2020 NH3 emission ceilings in 2016. The highest exceedances from the 2020 emission commitment level occurred in Latvia (15%), Germany (12%) and the UK (12%). Simulation of the required NH3 emission reduction by WRF/Chem showed that relatively large reductions in PM2.5 concentrations occur over central-western Europe and the UK. The largest health benefits (> 5% reduction in premature mortality) were found for Scandinavia. The economic benefit from avoided premature deaths over Europe amounts to 14,837 M€/year. The costs of four NH3 emission abatement options, where each would fully achieve the required emission reduction, range from 80 M€/year for low nitrogen feed to 3738 M€/year for low-emission animal housing, with covered manure storage (236 M€/year) and urea fertilizer application (253 M€/year), in between. Our analysis indicates that the costs of compliance by the agricultural sector with the commitments of the European air quality regulations are much lower than the economic benefit. Thus, much more ambitious reduction commitments for NH3 emissions could be applied by the EU-28. The monetization of the health benefits of NH3 emission abatement policies and the assessment of the implementation costs can help policy-makers devise effective air pollution control programmes.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the spatial and temporal variation of the aerosol optical depth (AOD), the particle size characteristics (Angstrom coefficients) and single scattering albedos during selected episodes over the Mediterranean area in 2006, based on independent observational datasets.

63 citations

Journal ArticleDOI
20 Dec 2013-Levant
TL;DR: In this paper, the authors discuss the only substantive evidence for the Epipalaeolithic of central Anatolia and present a revised understandings of phenomena often proposed as characteristic of the early human populations of South-west Asia including the appearance of sedentism, a putative Broad Spectrum Revolution, intensive plant exploitation and the emergence of distinctive ritual and symbolic practices.
Abstract: This paper discusses the only substantive evidence for the Epipalaeolithic of central Anatolia. This evidence allows revised understandings of phenomena often proposed as characteristic of the Epipalaeolithic of South-west Asia including the appearance of sedentism, a putative Broad Spectrum Revolution, intensive plant exploitation and the emergence of distinctive ritual and symbolic practices. It also allows further evaluation of the effect of Late Glacial climate change on human behaviours.

63 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111