scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented an analysis of long-term variability of submicron OA using the combination of an aerosol chemical speciation monitor (ACSM) and a multiwavelength Aethalometer.
Abstract: . Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly time-resolved long-term characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of an aerosol chemical speciation monitor (ACSM) and a multiwavelength Aethalometer from November 2011 to March 2018 at a peri-urban background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18 %–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase in LO-OOA concentrations and contributions (50 %–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely, high concentrations and OA contributions (32 %–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about −175 ng m −3 yr −1 ) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil-fuel and biomass-burning black carbon components) and no statistically significant trend for LO-OOA over the 6-year investigated period.

49 citations

Journal ArticleDOI
TL;DR: This research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures by examining how ozone levels changed under heatwave conditions with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions.
Abstract: Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.

49 citations

Journal ArticleDOI
01 Nov 2014-Energy
TL;DR: In this paper, an econometric model of electricity demand is used, in conjunction with climate projections from a state-of-the-art Global Circulation Model with a regional focus on the Eastern Mediterranean, to assess additional electricity requirements and the associated costs in the Mediterranean island of Cyprus by the mid-21st century because of projected anthropogenic climate change.

49 citations

Posted ContentDOI
TL;DR: In this paper, the authors used the particular, comprehensive atmospheric multiphase chemistry (EMAC) model to investigate the main factors that control aerosol acidity, and uncovered remarkable variability and unexpected trends during the past 50 years in different parts of the world.
Abstract: . The acidity of atmospheric aerosols regulates the particulate mass, composition and toxicity, and has important consequences for public health, ecosystems and climate. Despite these broad impacts, the global distribution and evolution of aerosol acidity are unknown. We used the particular, comprehensive atmospheric multiphase chemistry – climate model EMAC to investigate the main factors that control aerosol acidity, and uncovered remarkable variability and unexpected trends during the past 50 years in different parts of the world. We find that alkaline compounds, notably ammonium, and to a lesser extent crustal cations, buffer the aerosol pH on a global scale. Given the importance of aerosols for the atmospheric energy budget, cloud formation, pollutant deposition and public health, alkaline species hold the key to control strategies for air quality and climate change.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first direct evidence on cloud condensation nuclei (CCN) production resulting from atmospheric new particle formation (NPF) in the eastern Mediterranean atmosphere.
Abstract: . While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of κ was lower by 0.2–0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

48 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111