scispace - formally typeset
Search or ask a question
Institution

The Cyprus Institute

OtherNicosia, Cyprus
About: The Cyprus Institute is a other organization based out in Nicosia, Cyprus. It is known for research contribution in the topics: Aerosol & Environmental science. The organization has 418 authors who have published 1252 publications receiving 32586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the MACC reanalysis dust product is evaluated over Europe, Northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007-2012).
Abstract: . The MACC reanalysis dust product is evaluated over Europe, northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). MACC dust optical depth at 550 nm (DOD 550 ) data are compared against LIVAS DOD 532 observations. As only natural aerosol (dust and sea salt) profiles are available in MACC, here we focus on layers above 1 km a.s.l. to diminish the influence of sea salt particles that typically reside at low heights. So, MACC natural aerosol extinction coefficient profiles at 550 nm are compared against dust extinction coefficient profiles at 532 nm from LIVAS, assuming that the MACC natural aerosol profile data can be similar to the dust profile data, especially over pure continental regions. It is shown that the reanalysis data are capable of capturing the major dust hot spots in the area as the MACC DOD 550 patterns are close to the LIVAS DOD 532 patterns throughout the year. MACC overestimates DOD for regions with low dust loadings and underestimates DOD for regions with high dust loadings where DOD exceeds ∼ 0.3. The mean bias between the MACC and LIVAS DOD is 0.025 ( ∼ 25 %) over the whole domain. Both MACC and LIVAS capture the summer and spring high dust loadings, especially over northern Africa and the Middle East, and exhibit similar monthly structures despite the biases. In this study, dust extinction coefficient patterns are reported at four layers (layer 1: 1200–3000 m a.s.l., layer 2: 3000–4800 m a.s.l., layer 3: 4800–6600 m a.s.l. and layer 4: 6600–8400 m a.s.l.). The MACC and LIVAS extinction coefficient patterns are similar over areas characterized by high dust loadings for the first three layers. Within layer 4, MACC overestimates extinction coefficients consistently throughout the year over the whole domain. MACC overestimates extinction coefficients compared to LIVAS over regions away from the major dust sources while over regions close to the dust sources (the Sahara and Middle East) it underestimates strongly only for heights below ∼ 3–5 km a.s.l. depending on the period of the year. In general, it is shown that dust loadings appear over remote regions and at heights up to 9 km a.s.l. in MACC contrary to LIVAS. This could be due to the model performance and parameterizations of emissions and other processes, due to the assimilation of satellite aerosol measurements over dark surfaces only or due to a possible enhancement of aerosols by the MACC assimilation system.

22 citations

Journal ArticleDOI
TL;DR: In this article, the role of materials selected for different urban surfaces (e.g. on building walls, roofs and pavements) in the intensity of the urban heat island (UHI) phenomenon was investigated.
Abstract: This work investigates the role of materials selected for different urban surfaces (e.g. on building walls, roofs and pavements) in the intensity of the urban heat island (UHI) phenomenon. Three archetypal street-canyon geometries are considered, reflecting two-dimensional canyon arrays with frontal packing densities (λf) of 0.5, 0.25 and 0.125 under direct solar radiation and ground heating. The impact of radiative heat transfer in the urban environment is examined for each of the different built packing densities. A number of extreme heat scenarios were modelled in order to mimic conditions often found at low- to mid-latitudes dry climates. The investigation involved a suite of different computational fluid dynamics (CFD) simulations using the Reynolds-Averaged Navier–Stokes equations for mass and momentum coupled with the energy equation as well as using the standard k-e turbulence model. Results indicate that a higher rate of ventilation within the street canyon is observed in areas with sparser built packing density. However, such higher ventilation rates were not necessarily found to be linked with lower temperatures within the canyon; this is because such sparser geometries are associated with higher heat transfer from the wider surfaces of road material under the condition of direct solar radiation and ground heating. Sparser canyon arrays corresponding to wider asphalt street roads in particular, have been found to yield substantially higher air temperatures. Additional simulations indicated that replacing asphalt road surfaces in streets with concrete roads (of different albedo or emissivity characteristics) can lead up to a ~5 °C reduction in the canyon air temperature in dry climates. It is finally concluded that an optimized selection of materials in the urban infrastructure design can lead to a more effective mitigation of the UHI phenomenon than the optimisation of the built packing density.

22 citations

Journal ArticleDOI
TL;DR: The total OH reactivity of air was quantified, together with multiple VOCs measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and fast gas chromatography–mass spectromaetry (fast-GC–MS).
Abstract: Humans are a potent, mobile source of various volatile organic compounds (VOCs) in indoor environments. Such direct anthropogenic emissions are gaining importance, as those from furnishings and building materials have become better regulated and energy efficient homes may reduce ventilation. While previous studies have characterized human emissions in indoor environments, the question remains whether VOCs remain unidentified by current measuring techniques. In this study conducted in a climate chamber occupied by four people, the total OH reactivity of air was quantified, together with multiple VOCs measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and fast gas chromatography-mass spectrometry (fast-GC-MS). Whole-body, breath, and dermal emissions were assessed. The comparison of directly measured OH reactivity and that of the summed reactivity of individually measured species revealed no significant shortfall. Ozone exposure (37 ppb) was found to have little influence on breath OH reactivity but enhanced dermal OH reactivity significantly. Without ozone, the whole-body OH reactivity was dominated by breath emissions, mostly isoprene (76%). With ozone present, OH reactivity nearly doubled, with the increase being mainly caused by dermal emissions of mostly carbonyl compounds (57%). No significant difference in total OH reactivity was observed for different age groups (teenagers/young adults/seniors) without ozone. With ozone present, the total OH reactivity decreased slightly with increasing age.

22 citations

Posted ContentDOI
02 Oct 2020-medRxiv
TL;DR: A simple, easy-to-use spreadsheet model is presented to estimate the infection risk for different indoor environments, constrained by published data on human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters, and suggests that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments.
Abstract: The role of aerosolized SARS-CoV-2 viruses in airborne transmission of COVID-19 is debated. The transmitting aerosol particles are generated through the breathing and vocalization by infectious subjects. Some authors state that this represents the dominant route of spreading, while others dismiss the option. Public health organizations generally categorize it as a secondary transmission pathway. Here we present a simple, easy-to-use spreadsheet model to estimate the infection risk for different indoor environments, constrained by published data on human aerosol emissions, SARS-CoV-2 viral loads, infective dose and other parameters. We evaluate typical indoor settings such as an office, a classroom, a choir practice room and reception/party environments. These are examples, and the reader is invited to use the algorithm for alternative situations and assumptions. Our results suggest that aerosols from highly infective subjects can effectively transmit COVID-19 in indoor environments. This “highly infective” category represents approximately twenty percent of the patients tested positive for SARS-CoV-2. We find that “super infective” subjects, representing the top five to ten percent of positive-tested ones, plus an unknown fraction of less, but still highly infective, high aerosol-emitting subjects, may cause COVID-19 clusters (>10 infections), e.g. in classrooms, during choir singing and at receptions. The highly infective ones also risk causing such events at parties, for example. In general, active room ventilation and the ubiquitous wearing of face masks (i.e. by all subjects) may reduce the individual infection risk by a factor of five to ten, similar to high-volume HEPA air filtering. The most effective mitigation measure studied is the use of high-quality masks, which can drastically reduce the indoor infection risk through aerosols.

22 citations

Journal ArticleDOI
Abstract: Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population and land-use (forests, croplands, pastures) exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment, population projections from the NASA-SEDAC dataset, and land-use projections from the Land-Use Harmonization 2 project for 1981–2100. The exposure to drought hazard is presented for five SSPs (SSP1-SSP5) at four Global Warming Levels (GWLs, from 1.5 to 4°C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the combination SSP3-GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (vs. 1981–2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, and SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 (fossil-fuelled development) at GWL 4°C, approximately 2·106 km2 of forests and croplands (respectively, 6 and 11%) and 1.5·106 km2 of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI, this extent will rise to 17·106 km2 of forests (49%), 6·106 km2 of pastures (78%), and 12·106 km2 of croplands (67%), with mid-latitudes being the most affected areas. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change.we

22 citations


Authors

Showing all 459 results

NameH-indexPapersCitations
Philippe Ciais149965114503
Jonathan Williams10261341486
Jos Lelieveld10057037657
Andrew N. Nicolaides9057230861
Efstathios Stiliaris8834025487
Leonard A. Barrie7417717356
Nikos Mihalopoulos6928015261
Karl Jansen5749811874
Jean Sciare561299374
Euripides G. Stephanou5412814235
Lefkos T. Middleton5418415683
Elena Xoplaki5312912097
Theodoros Christoudias501977765
Dimitris Drikakis492867136
George K. Christophides4812711099
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

80% related

University of Bern
79.4K papers, 3.1M citations

79% related

University of Maryland, College Park
155.9K papers, 7.2M citations

78% related

University of Colorado Boulder
115.1K papers, 5.3M citations

78% related

National Research Council
76K papers, 2.4M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202274
2021200
2020157
2019136
2018111