scispace - formally typeset
Search or ask a question
Institution

The Nature Conservancy

NonprofitArlington, Virginia, United States
About: The Nature Conservancy is a nonprofit organization based out in Arlington, Virginia, United States. It is known for research contribution in the topics: Population & Ecosystem services. The organization has 2016 authors who have published 3797 publications receiving 202045 citations. The organization is also known as: Nature Conservancy & TNC.


Papers
More filters
Journal ArticleDOI
15 Feb 2008-Science
TL;DR: This article developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems and found that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers.
Abstract: The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.

5,365 citations

Journal ArticleDOI
28 May 2010-Science
TL;DR: Most indicators of the state of biodiversity showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity showed increases, indicating that the Convention on Biological Diversity’s 2010 targets have not been met.
Abstract: In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

3,993 citations

Journal ArticleDOI
29 Feb 2008-Science
TL;DR: Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas reductions that these biofuel reductions would provide by displacing fossil fuels.
Abstract: Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to lowcarbon fuels a high priority. Biofuels are a potential lowcarbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food-based biofuels in Brazil, Southeast Asia, and the United States creates a ‘biofuel carbon debt’ by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these biofuels provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on abandoned agricultural lands planted with perennials incur little or no carbon debt and offer immediate and sustained GHG advantages. Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, sugarcane, soybeans and palms. As a result, land in

3,856 citations

Journal ArticleDOI
15 Apr 2005-Science
TL;DR: A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse catchments, which can be used to identify ecological risks associated with further impacts onLarge river systems.
Abstract: A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse. Dam-impacted catchments experience higher irrigation pressure and about 25 times more economic activity per unit of water than do unaffected catchments. In view of projected changes in climate and water resource use, these findings can be used to identify ecological risks associated with further impacts on large river systems.

2,986 citations

Journal ArticleDOI
TL;DR: The Marine Ecoregions of the World (MEOW) as discussed by the authors is a global system for coastal and shelf areas, which is a nested system of 12 realms, 62 provinces, and 232 ecoregs.
Abstract: The conservation and sustainable use of marine resources is a highlighted goal on a growing number of national and international policy agendas. Unfortunately, efforts to assess progress, as well as to strategically plan and prioritize new marine conservation measures, have been hampered by the lack of a detailed, comprehensive biogeographic system to classify the oceans. Here we report on a new global system for coastal and shelf areas: the Marine Ecoregions of the World, or MEOW, a nested system of 12 realms, 62 provinces, and 232 ecoregions. This system provides considerably better spatial resolution than earlier global systems, yet it preserves many common elements and can be cross-referenced to many regional biogeographic classifications. The designation of terrestrial ecoregions has revolutionized priority setting and planning for terrestrial conservation; we anticipate similar benefits from the use of a coherent and credible marine system.

2,797 citations


Authors

Showing all 2057 results

NameH-indexPapersCitations
Hugh P. Possingham12984759759
Peter J. Mumby9136334412
Peter Kareiva8426033352
Peter Marler8117422070
Nancy B. Grimm7722929495
Anthony R. Ives7523024066
John A. Wiens7519326694
David J. Mladenoff6718913215
Christer Nilsson6620921370
Kerrie A. Wilson6321014511
Joseph M. Kiesecker6114413045
Erik Meijaard6025011304
Mark Spalding5310322357
Andrew T. Hudak501989363
J. P. Grime507433097
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Smithsonian Tropical Research Institute
5.9K papers, 363.9K citations

87% related

United States Fish and Wildlife Service
8.6K papers, 264K citations

86% related

Northern Arizona University
13.3K papers, 485.2K citations

85% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202251
2021354
2020351
2019310
2018321