Institution
Tianjin University
Education•Tianjin, China•
About: Tianjin University is a education organization based out in Tianjin, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 72761 authors who have published 79922 publications receiving 1229042 citations. The organization is also known as: Peiyang University.
Topics: Catalysis, Adsorption, Membrane, Graphene, Microstructure
Papers published on a yearly basis
Papers
More filters
Mohammad H. Forouzanfar1, Lily Alexander, H. Ross Anderson, Victoria F Bachman1 +733 more•Institutions (289)
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.
Abstract: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks. Bill & Melinda Gates Foundation.
5,668 citations
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
3,918 citations
TL;DR: A critical review of recent developments in hydrogenation reaction, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism, provides an overview regarding the challenges and opportunities for future research in the field.
Abstract: Owing to the increasing emissions of carbon dioxide (CO2), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO2 in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO2. Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO2, offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO2 not only reduces the increasing CO2 buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
2,539 citations
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).
2,480 citations
TL;DR: In this paper, a supercapacitor with a maximum specific capacitance of 205 F/g with a measured power density of 10 kW/kg at energy density of 28.5 Wh/kg in an aqueous electrolyte solution has been obtained.
Abstract: Graphene materials (GMs) as supercapacitor electrode materials have been investigated. GMs are prepared from graphene oxide sheets, and subsequently suffer a gas-based hydrazine reduction to restore the conducting carbon network. A maximum specific capacitance of 205 F/g with a measured power density of 10 kW/kg at energy density of 28.5 Wh/kg in an aqueous electrolyte solution has been obtained. Meanwhile, the supercapacitor devices exhibit excellent long cycle life along with ∼90% specific capacitance retained after 1200 cycle tests. These remarkable results demonstrate the exciting commercial potential for high performance, environmentally friendly and low-cost electrical energy storage devices based on this new 2D graphene material.
2,308 citations
Authors
Showing all 73453 results
Name | H-index | Papers | Citations |
---|---|---|---|
Nicholas G. Martin | 192 | 1770 | 161952 |
Xiang Zhang | 154 | 1733 | 117576 |
Ben Zhong Tang | 149 | 2007 | 116294 |
Yoshio Bando | 147 | 1234 | 80883 |
J. Fraser Stoddart | 147 | 1239 | 96083 |
Kuo-Chen Chou | 143 | 487 | 57711 |
Shi-Zhang Qiao | 142 | 523 | 80888 |
Bin Liu | 138 | 2181 | 87085 |
Peng Shi | 137 | 1371 | 65195 |
Jie Liu | 131 | 1531 | 68891 |
Zhen Li | 127 | 1712 | 71351 |
Chao Zhang | 127 | 3119 | 84711 |
Akihisa Inoue | 126 | 2652 | 93980 |
Huijun Gao | 121 | 685 | 44399 |
Yusuke Yamauchi | 117 | 1000 | 51685 |