scispace - formally typeset
Search or ask a question

Showing papers by "Tohoku University published in 2013"


Journal ArticleDOI
TL;DR: Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets.
Abstract: Efficient evolution of hydrogen via electrocatalysis at low overpotentials is promising for clean energy production. Monolayered nanosheets of chemically exfoliated WS2 are shown to be efficient catalysts for hydrogen evolution at very low overpotentials. The enhanced catalytic performance is associated with the high concentration of the strained metallic octahedral phase in the exfoliated nanosheets.

2,249 citations


Journal ArticleDOI
TL;DR: By partially oxidizingMoS2, it is found that the activity of 2H MoS2 is significantly reduced after oxidation, consistent with edge oxidation, and 1T MoS 2 remains unaffected after oxidization, suggesting that edges of the nanosheets are not the main active sites.
Abstract: We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially oxidizing MoS2, we found that the activity of 2H MoS2 is significantly reduced after oxidation, consistent with edge oxidation. On the other hand, 1T MoS2 remains unaffected after oxidation, suggesting that edges of the nanosheets are not the main active sites. The importance of electrical conductivity of the two phases on the hydrogen evolution reaction activity has been further confirmed by using carbon nanotubes to increase the conductivity of 2H MoS2.

1,856 citations


Journal ArticleDOI
21 Jun 2013-Science
TL;DR: Band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate is demonstrated, resulting in an unexpectedly large band gap at charge neutrality.
Abstract: van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moire superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ± 5 3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.

1,454 citations


Journal ArticleDOI
30 May 2013-Nature
TL;DR: It is demonstrated that moiré superlattices arising in bilayer graphene coupled to hexagonal boron nitride provide a periodic modulation with ideal length scales of the order of ten nanometres, enabling unprecedented experimental access to the fractal spectrum.
Abstract: Moire superlattices arising in bilayer graphene coupled to hexagonal boron nitride provide a periodic potential modulation on a length scale ideally suited to studying the fractal features of the Hofstadter energy spectrum in large magnetic fields. In 1976 Douglas Hofstadter predicted that electrons in a lattice subjected to electrostatic and magnetic fields would show a characteristic energy spectrum determined by the interplay between two quantizing fields. The expected spectrum would feature a repeating butterfly-shaped motif, known as Hofstadter's butterfly. The experimental realization of the phenomenon has proved difficult because of the problem of producing a sufficiently disorder-free superlattice where the length scales for magnetic and electric field can truly compete with each other. Now that goal has been achieved — twice. Two groups working independently produced superlattices by placing ultraclean graphene (Ponomarenko et al.) or bilayer graphene (Kim et al.) on a hexagonal boron nitride substrate and crystallographically aligning the films at a precise angle to produce moire pattern superstructures. Electronic transport measurements on the moire superlattices provide clear evidence for Hofstadter's spectrum. The demonstrated experimental access to a fractal spectrum offers opportunities for the study of complex chaotic effects in a tunable quantum system. Electrons moving through a spatially periodic lattice potential develop a quantized energy spectrum consisting of discrete Bloch bands. In two dimensions, electrons moving through a magnetic field also develop a quantized energy spectrum, consisting of highly degenerate Landau energy levels. When subject to both a magnetic field and a periodic electrostatic potential, two-dimensional systems of electrons exhibit a self-similar recursive energy spectrum1. Known as Hofstadter’s butterfly, this complex spectrum results from an interplay between the characteristic lengths associated with the two quantizing fields1,2,3,4,5,6,7,8,9,10, and is one of the first quantum fractals discovered in physics. In the decades since its prediction, experimental attempts to study this effect have been limited by difficulties in reconciling the two length scales. Typical atomic lattices (with periodicities of less than one nanometre) require unfeasibly large magnetic fields to reach the commensurability condition, and in artificially engineered structures (with periodicities greater than about 100 nanometres) the corresponding fields are too small to overcome disorder completely11,12,13,14,15,16,17. Here we demonstrate that moire superlattices arising in bilayer graphene coupled to hexagonal boron nitride provide a periodic modulation with ideal length scales of the order of ten nanometres, enabling unprecedented experimental access to the fractal spectrum. We confirm that quantum Hall features associated with the fractal gaps are described by two integer topological quantum numbers, and report evidence of their recursive structure. Observation of a Hofstadter spectrum in bilayer graphene means that it is possible to investigate emergent behaviour within a fractal energy landscape in a system with tunable internal degrees of freedom.

1,438 citations


Journal ArticleDOI
TL;DR: In this article, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta), M 2 N (M 2 N), with surfaces chemically functionalized by F, OH, and O groups, are examined.
Abstract: Layered MAX phases are exfoliated into 2D single layers and multilayers, so-called MXenes. Using fi rst-principles calculations, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta) and M 2 N (M = Ti, Cr, Zr) with surfaces chemically functionalized by F, OH, and O groups, are examined. Upon appropriate surface functionalization, Sc 2 C, Ti 2 C, Zr 2 C, and Hf 2 C MXenes are expected to become semiconductors. It is also derived theoretically that functionalized Cr 2 C and Cr 2 N MXenes are magnetic. Thermoelectric calculations based on the Boltzmann theory imply that semiconducting MXenes attain very large Seebeck coeffi cients at low temperatures.

1,288 citations


Journal ArticleDOI
TL;DR: The historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique are considered, while the role ofABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined.
Abstract: Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM.This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements.At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM.The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised.The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.

1,183 citations


Journal ArticleDOI
TL;DR: A comprehensive and up-to-date review on the rapid progress achieved very recently on this subject can be found in this article, where key materials-science issues of general interest, including the initiation of shear localization starting from shear transformations, the temperature and velocity reached in the propagating or sliding band, the structural evolution inside the shear-band material, and the parameters that strongly influence shearbanding are discussed.
Abstract: Shear-banding is a ubiquitous plastic-deformation mode in materials. In metallic glasses, shear bands are particularly important as they play the decisive role in controlling plasticity and failure at room temperature. While there have been several reviews on the general mechanical properties of metallic glasses, a pressing need remains for an overview focused exclusively on shear bands, which have received tremendous attention in the past several years. This article attempts to provide a comprehensive and up-to-date review on the rapid progress achieved very recently on this subject. We describe the shear bands from the inside out, and treat key materials-science issues of general interest, including the initiation of shear localization starting from shear transformations, the temperature and velocity reached in the propagating or sliding band, the structural evolution inside the shear-band material, and the parameters that strongly influence shear-banding. Several new discoveries and concepts, such as stick-slip cold shear-banding and strength/plasticity enhancement at sub-micrometer sample sizes, will also be highlighted. The understanding built-up from these accounts will be used to explain the successful control of shear bands achieved so far in the laboratory. The review also identifies a number of key remaining questions to be answered, and presents an outlook for the field.

1,164 citations


Journal ArticleDOI
TL;DR: It is shown that the effect originates from concerted actions of the direct and inverse spin Hall effects and therefore it is called "spin Hall magnetoresistance."
Abstract: We report anisotropic magnetoresistance in Pt|Y3Fe5O12 bilayers. In spite of Y3Fe5O12 being a very good electrical insulator, the resistance of the Pt layer reflects its magnetization direction. The effect persists even when a Cu layer is inserted between Pt and Y3Fe5O12, excluding the contribution of induced equilibrium magnetization at the interface. Instead, we show that the effect originates from concerted actions of the direct and inverse spin Hall effects and therefore call it “spin Hall magnetoresistance.”

927 citations


Journal ArticleDOI
TL;DR: It is shown that phosphorylation of the autophagy-adaptor protein p62 markedly increases p62's binding affinity for Keap1, an adaptor of the Cul3-ubiquitin E3 ligase complex responsible for degrading Nrf2, and that inhibitors of the interaction between phosphorylated p62 and Keap 1 have potential as therapeutic agents against human HCC.

824 citations


Journal ArticleDOI
TL;DR: The tight-binding model is used to describe optical and transport properties including the integer quantum Hall effect, and the also discusses orbital magnetism, phonons and the influence of strain on electronic properties.
Abstract: We review the electronic properties of bilayer graphene, beginning with a description of the tight-binding model of bilayer graphene and the derivation of the effective Hamiltonian describing massive chiral quasiparticles in two parabolic bands at low energies. We take into account five tight-binding parameters of the Slonczewski–Weiss–McClure model of bulk graphite plus intra- and interlayer asymmetry between atomic sites which induce band gaps in the low-energy spectrum. The Hartree model of screening and band-gap opening due to interlayer asymmetry in the presence of external gates is presented. The tight-binding model is used to describe optical and transport properties including the integer quantum Hall effect, and we also discuss orbital magnetism, phonons and the influence of strain on electronic properties. We conclude with an overview of electronic interaction effects.

797 citations


Journal ArticleDOI
01 Dec 2013-Carbon
TL;DR: This article proposed a nomenclature for two-dimensional carbons that could guide authors toward a more precise description of their subject materials, and could allow the field to move forward with a higher degree of common understanding.

Journal ArticleDOI
TL;DR: In this article, a high-quality draft genome sequence of the diploid P. bretschneideri Rehd was provided for de novo assembly of a highly heterozygous genome of this size with highly repetitive DNA sequences.
Abstract: Pear, the third most important temperate fruit species after grape and apple, belongs to the subfamily Pomoideae in the family Rosaceae. The majority of cultivated pears are functional diploids (2n = 34). As a popular fruit in the world market, pear has widespread cultivation on six continents, with major production in China, the United States, Italy, Argentina, and Spain (Supplemental Fig. 1). Pears are among the oldest of the world's fruit crops, with >3000 yr of cultivation history (Lombard and Westwood 1987), likely originating during the Tertiary period (65–55 million years ago [MYA]) in the mountainous regions of southwestern China and, from there, spreading on to both the East and West (Rubtsov 1944; Zeven and Zhukovsky 1975). Central Asia and eastern China are identified as two subcenters of genetic diversity for pear (Vavilov 1951). The Pyrus genus is genetically diverse with thousands of cultivars, but it can be divided into two major groups, Occidental pears (European pears) and Oriental pears (Asiatic pears). At least 22 primary species are well-recognized in Pyrus; however, only a few species, including Pyrus bretschneideri, Pyrus pyrifolia, Pyrus ussuriensis, Pyrus sinkiangensis, and Pyrus communis, have been utilized for fruit production. Herein, we report on a high-quality draft genome sequence of the diploid P. bretschneideri Rehd. cv. ‘Dangshansuli’ (also known as ‘Suli’), the most important commercial Asiatic pear cultivar grown in the world (>4 million tons per year), having >500 yr of cultivated history in China. Pear is highly heterozygous due to self-incompatibility and interspecies compatibility. The genome is known to have an abundance of repetitive DNA sequences. In this study, a novel combination of BAC-by-BAC (bacterial artificial chromosome) strategy, with Illumina sequencing technology, is used for the first time for de novo assembly of a highly heterozygous genome of this size with highly repetitive DNA sequences. This has demonstrated that a complex plant genome sequence can be assembled and characterized using these technologies without the availability of a physical reference. Additionally, we also report on primary factors contributing to genome size differences between pear and apple, both belonging to the subfamily Pomoideae; chromosomal evolution of Rosaceae; and genes controlling valuable traits of pear, including self-incompatibility, lignified stone cells in flesh of fruit (unique to pear), sugar, and aroma.

Journal ArticleDOI
TL;DR: In this paper, the authors describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructures and show that the effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses.
Abstract: Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

Journal ArticleDOI
18 Sep 2013-Neuron
TL;DR: A class of tau ligands, phenyl/pyridinyl-butadienyl-benzothiazoles/benZothiazoliums (PBBs), for visualizing diverse tau inclusions in brains of living patients with AD or non-AD tauopathies and animal models of these disorders are developed.

Journal ArticleDOI
TL;DR: In this paper, the spin Hall magnetoresistance in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions was investigated.
Abstract: We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a nonequilibrium proximity phenomenon. We compute the SMR in F|N and F|N|F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N|F bilayers. For F|N|F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.

Journal ArticleDOI
TL;DR: It is likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect.
Abstract: The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation

Journal ArticleDOI
TL;DR: It is demonstrated that the spinel Li4Ti5O12, well-known as a 'zero-strain' anode for lithium-ion batteries, can also store sodium, displaying an average storage voltage of 0.91 V and interfacial structure is clearly resolved at an atomic scale in electrochemically sodiated Li4 Ti5O 12 for the first time via the advanced electron microscopy.
Abstract: The development of suitable anode materials for room-temperature sodium-ion batteries remains a challenging issue. Sun et al. show that the well-known zero-strain Li4Ti5O12 anode for lithium storage is capable of reversibly hosting sodium ions via a three-phase storage mechanism.

Journal ArticleDOI
Z. Q. Liu, C. P. Shen1, C. Z. Yuan, I. Adachi  +188 moreInstitutions (56)
TL;DR: In a study of Y(4260) → π+ π- J/φ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance that can be interpreted as a new charged charmoniumlike state.
Abstract: The cross section for ee+ e- → π+ π- J/ψ between 3.8 and 5.5 GeV is measured with a 967 fb(-1) data sample collected by the Belle detector at or near the Υ(nS) (n = 1,2,…,5) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of π+ π- J/ψ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of Y(4260) → π+ π- J/ψ decays, a structure is observed in the M(π(±)J/ψ) mass spectrum with 5.2σ significance, with mass M = (3894.5 ± 6.6 ± 4.5) MeV/c2 and width Γ = (63 ± 24 ± 26) MeV/c2, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.

Journal ArticleDOI
29 Nov 2013-Science
TL;DR: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million.
Abstract: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.

Journal ArticleDOI
TL;DR: Translational studies of the Keap1-Nrf2 system, from mechanistic understanding to clinical applications, are now important to improve human health.

Journal ArticleDOI
TL;DR: In this paper, the reduction of 5-hydroxymethylfurfural (HMF) with H2 over heterogeneous catalysts is the simplest way to convert the oxygen-rich compounds.
Abstract: Furfural and 5-hydroxymethylfurfural (HMF) are important platform chemicals in biorefinery. Reduction of furfural or HMF with H2 over heterogeneous catalysts is the simplest way to convert the oxygen-rich compounds. However, the process can involve many types of reactions such as hydrogenation of the C═O bond, hydrogenation of the furan ring, C–O hydrogenolysis, rearrangement, C–C dissociation, and polymerization. Hydrogenation reactions are most studied in line with hydrogenations of other α,β-unsaturated aldehydes, and it becomes possible to produce each product selectively: furfuryl alcohol, tetrahydrofurfuryl alcohol, 2,5-bis(hydroxymethyl)furan, or 2,5-bis(hydroxymethyl)tetrahydrofuran. Total reduction of side substituents to give 2-methylfuran or 2,5-dimethylfuran is another well-known reaction. Rearrangement and C–O hydrogenolysis reactions have been recently investigated, and they can give useful products such as cyclopentanone, 1,5-pentanediol, and 1,6-hexanediol. Ongoing studies of the reaction ...

Journal ArticleDOI
TL;DR: CH5424802 is well tolerated and highly active in patients with advanced ALK-rearranged NSCLC, and the study is still ongoing, since 40 of the 46 patients in the phase 2 portion remain on treatment.
Abstract: Summary Background Currently, crizotinib is the only drug that has been approved for treatment of ALK -rearranged non-small-cell lung cancer (NSCLC). We aimed to study the activity and safety of CH5424802, a potent, selective, and orally available ALK inhibitor. Methods In this multicentre, single-arm, open-label, phase 1–2 study of CH5424802, we recruited ALK inhibitor-naive patients with ALK -rearranged advanced NSCLC from 13 hospitals in Japan. In the phase 1 portion of the study, patients received CH5424802 orally twice daily by dose escalation. The primary endpoints of the phase 1 were dose limiting toxicity (DLT), maximum tolerated dose (MTD), and pharmacokinetic parameters. In the phase 2 portion of the study, patients received CH5424802 at the recommended dose identified in the phase 1 portion of the study orally twice a day. The primary endpoint of the phase 2 was the proportion of patients who had an objective response. Treatment was continued in 21-day cycles until disease progression, intolerable adverse events, or withdrawal of consent. The analysis was done by intent to treat. This study is registered with the Japan Pharmaceutical Information Center, number JapicCTI-101264. Findings Patients were enrolled between Sept 10, 2010, and April 18, 2012. The data cutoff date was July 31, 2012. In the phase 1 portion, 24 patients were treated at doses of 20–300 mg twice daily. No DLTs or adverse events of grade 4 were noted up to the highest dose; thus 300 mg twice daily was the recommended phase 2 dose. In the phase 2 portion of the study, 46 patients were treated with the recommended dose, of whom 43 achieved an objective response (93·5%, 95% CI 82·1–98·6) including two complete responses (4·3%, 0·5–14·8) and 41 partial responses (89·1%, 76·4–96·4). Treatment-related adverse events of grade 3 were recorded in 12 (26%) of 46 patients, including two patients each experiencing decreased neutrophil count and increased blood creatine phosphokinase. Serious adverse events occurred in five patients (11%). No grade 4 adverse events or deaths were reported. The study is still ongoing, since 40 of the 46 patients in the phase 2 portion remain on treatment. Interpretation CH5424802 is well tolerated and highly active in patients with advanced ALK -rearranged NSCLC. Funding Chugai Pharmaceutical Co, Ltd.

Journal ArticleDOI
TL;DR: Monotherapy with S-1 demonstrated noninferiority to gemcitabine in overall survival with good tolerability and presents a convenient oral alternative for locally advanced and metastatic pancreatic cancer.
Abstract: Purpose The present phase III study was designed to investigate the noninferiority of S-1 alone and superiority of gemcitabine plus S-1 compared with gemcitabine alone with respect to overall survival. Patients and Methods The participants were chemotherapy-naive patients with locally advanced or metastatic pancreatic cancer. Patients were randomly assigned to receive only gemcitabine (1,000 mg/m2 on days 1, 8, and 15 of a 28-day cycle), only S-1 (80, 100, or 120 mg/d according to body-surface area on days 1 through 28 of a 42-day cycle), or gemcitabine plus S-1 (gemcitabine 1,000 mg/m2 on days 1 and 8 plus S-1 60, 80, or 100 mg/d according to body-surface area on days 1 through 14 of a 21-day cycle). Results In the total of 834 enrolled patients, median overall survival was 8.8 months in the gemcitabine group, 9.7 months in the S-1 group, and 10.1 months in the gemcitabine plus S-1 group. The noninferiority of S-1 to gemcitabine was demonstrated (hazard ratio, 0.96; 97.5% CI, 0.78 to 1.18; P < .001 for n...

Journal ArticleDOI
TL;DR: The requirements for the exploration mission in the Fukushima Daiichi Nuclear Power Plants are presented, the implementation is discussed, and the results of the mission are reported.
Abstract: On March 11, 2011, a massive earthquake (magnitude 9.0) and accompanying tsunami hit the Tohoku region of eastern Japan. Since then, the Fukushima Daiichi Nuclear Power Plants have been facing a crisis due to the loss of all power that resulted from the meltdown accidents. Three buildings housing nuclear reactors were seriously damaged from hydrogen explosions, and, in one building, the nuclear reactions became out of control. It was too dangerous for humans to enter the buildings to inspect the damage because radioactive materials were also being released. In response to this crisis, it was decided that mobile rescue robots would be used to carry out surveillance missions. The mobile rescue robots needed could not be delivered to the Tokyo Electric Power Company (TEPCO) until various technical issues were resolved. Those issues involved hardware reliability, communication functions, and the ability of the robots' electronic components to withstand radiation. Additional sensors and functionality that would enable the robots to respond effectively to the crisis were also needed. Available robots were therefore retrofitted for the disaster reponse missions. First, the radiation tolerance of the electronic componenets was checked by means of gamma ray irradiation tests, which were conducted using the facilities of the Japan Atomic Energy Agency (JAEA). The commercial electronic devices used in the original robot systems operated long enough (more than 100 h at a 10% safety margin) in the assumed environment (100 mGy/h). Next, the usability of wireless communication in the target environment was assessed. Such tests were not possible in the target environment itself, so they were performed at the Hamaoka Daiichi Nuclear Power Plants, which are similar to the target environment. As previously predicted, the test results indicated that robust wireless communication would not be possible in the reactor buildings. It was therefore determined that a wired communication device would need to be installed. After TEPCO's official urgent mission proposal was received, the team mounted additional devices to facilitate the installation of a water gauge in the basement of the reactor buildings to determine flooding levels. While these preparations were taking place, prospective robot operators from TEPCO trained in a laboratory environment. Finally, one of the robots was delivered to the Fukushima Daiichi Nuclear Power Plants on June 20, 2011, where it performed a number of important missions inside the buildings. In this paper, the requirements for the exploration mission in the Fukushima Daiichi Nuclear Power Plants are presented, the implementation is discussed, and the results of the mission are reported. © 2013 Wiley Periodicals, Inc. (Webpage: http://www.astro.mech.tohoku.ac.jp/)

Journal ArticleDOI
TL;DR: This work reports a carbon with a density of 1.58 g cm−3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel, and has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm+3, the highest value so far reported for carbon materials in an aqueous
Abstract: A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices Here we report a carbon with a density of 158 g cm(-3), 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm(-3), which is the highest value so far reported for carbon materials in an aqueous electrolyte More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs

Journal ArticleDOI
TL;DR: In this paper, it was shown that spin polarization can also be achieved without the need for magnetism by using the unique crystal symmetry of tungsten selenide, which creates a Zeeman-like effect when a monolayer of the material is exposed to an external electric field.
Abstract: A magnetic field can lift the spin degeneracy of electrons. This Zeeman effect is an important route to generating the spin polarization required for spintronics. It is now shown that such polarization can also be achieved without the need for magnetism. The unique crystal symmetry of tungsten selenide creates a Zeeman-like effect when a monolayer of the material is exposed to an external electric field.


Journal ArticleDOI
TL;DR: The current status of research and development in Fe-based bulk metallic glasses (BMGs) is reviewed in this article, where the authors present the recent results on the glass-forming ability, structure, thermal stability, mechanical properties, corrosion behaviour, soft magnetic properties and applications of Febased bulk glassy a...
Abstract: The current status of research and development in Fe-based bulk metallic glasses (BMGs) is reviewed. Bulk metallic glasses are relatively new materials possessing a glassy structure and large section thickness. These materials have an exciting combination of properties such as high mechanical strength, good thermal stability, large supercooled liquid region and potential for easy forming. Ever since the first synthesis of an Fe-based BMG in an Fe–Al–Ga–P–C–B system in 1995, there has been intense activity on the synthesis and characterisation of Fe-based BMGs. These BMGs exhibit some unique characteristics which have not been obtained in conventional Fe-based crystalline alloys. This uniqueness has led to practical uses of these bulk glassy alloys as soft magnetic and structural materials. This review presents the recent results on the glass-forming ability, structure, thermal stability, mechanical properties, corrosion behaviour, soft magnetic properties and applications of Fe-based bulk glassy a...

Journal ArticleDOI
TL;DR: Graphene, a two-dimensional carbon sheet with one atom thickness and one of the thinnest materials in universe, has inspired huge interest in physics, materials science, chemistry and biology.
Abstract: Graphene, a two-dimensional carbon sheet with one atom thickness and one of the thinnest materials in universe, has inspired huge interest in physics, materials science, chemistry and biology. However, pure graphene sheets are limited for many applications despite their excellent characteristics and scientists face challenges to induce more and controlled functionality. Therefore graphene nanocomposites or hybrids are attracting increasing efforts for real applications in energy and environmental areas by introducing controlled functional building blocks to graphene. In this Review, we first give a brief introduction of graphene's unique physical and chemical properties followed by various preparation and functionalization methods for graphene nanocomposites in the second section. We focus on recent energy-related progress of graphene nanocomposites in solar energy conversion (e.g., photovoltaic and photoelectrochemical devices, artificial photosynthesis) and electrochemical energy devices (e.g., lithium ion battery, supercapacitor, fuel cell) in the third section. We then review the advances in environmental applications of functionalized graphene nanocomposites for the detection and removal of heavy metal ions, organic pollutants, gas and bacteria in the fourth section. Finally a conclusion and perspective is given to discuss the remaining challenges for graphene nanocomposites in energy and environmental science.

Journal ArticleDOI
TL;DR: In this article, the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and non-ferromagnet hybrid structures was investigated and quantitatively analyzed.
Abstract: We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or magnetite and for the nonferromagnet, copper or gold. The spin Hall magnetoresistance effect is theoretically ascribed to the combined action of spin Hall and inverse spin Hall effect in the platinum metal top layer. It therefore should characteristically depend upon the orientation of the magnetization in the adjacent ferromagnet and prevail even if an additional, nonferromagnetic metal layer is inserted between Pt and the ferromagnet. Our experimental data corroborate these theoretical conjectures. Using the spin Hall magnetoresistance theory to analyze our data, we extract the spin Hall angle and the spin diffusion length in platinum. For a spin-mixing conductance of 4×1014 ??1m?2, we obtain a spin Hall angle of 0.11±0.08 and a spin diffusion length of (1.5±0.5) nm for Pt in our thin-film samples