scispace - formally typeset
Search or ask a question
Institution

Tohoku University

EducationSendai, Japan
About: Tohoku University is a education organization based out in Sendai, Japan. It is known for research contribution in the topics: Magnetization & Alloy. The organization has 72116 authors who have published 170791 publications receiving 3941714 citations. The organization is also known as: Tōhoku daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an optimum surface texture pattern was selected to improve the load carrying capacity of SiC bearing working in water, where micro-pits, evenly distributed in a square array, were selected as the texture pattern, and formed on one of the contact surfaces by reactive ion etching.

418 citations

Journal ArticleDOI
TL;DR: In this article, the authors show thermodynamic evidence for the realization of a spin-liquid ground state through a single-crystal calorimetric study of the dimer-based organic charge transfer salt κ-(BEDT-TTF)2Cu2(CN)3, with a triangular lattice structure down to 75mK.
Abstract: Spins in a two-dimensional triangular lattice are geometrically frustrated and cannot form an ordered ground state. Instead, a spin-liquid state is expected, and now thermodynamic measurements suggest that a spin liquid exists down to the lowest temperatures. In two-dimensional triangular lattices, geometric frustration prohibits the formation of ordering even at the lowest temperatures, and therefore a liquid-like ground state is expected. The spin-liquid problem has been one of the central topics of condensed-matter science for more than 30 yr in relation to the resonating-valence-bond model1. One of the characteristic features proposed is the existence of a linear temperature-dependent contribution to the heat capacity, as the degeneracy of the energy states should give rise to gapless excitations. Here, we show thermodynamic evidence for the realization of a spin-liquid ground state through a single-crystal calorimetric study of the dimer-based organic charge-transfer salt κ-(BEDT-TTF)2Cu2(CN)3, with a triangular lattice structure down to 75 mK. In addition, we report an unexpected hump structure in the heat capacity around 6 K, which may indicate a crossover into the quantum spin liquid.

417 citations

Journal ArticleDOI
TL;DR: It is discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density, and was associated with long leaf lifespan especially in forest understory.
Abstract: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.

417 citations

Journal ArticleDOI
10 Feb 1994-Nature
TL;DR: These results indicate that one (or all) of the small Maf proteins is the second constituent chain required for NF-E2 activity, and that negative as well as positive regulation can be achieved through an NF- E2 site, depending on the equilibrium concentrations of p45 and the MAF proteins inside erythroid cells.
Abstract: TRANSCRIPTION factor NF-E2 is crucial for regulating erythroid-specific gene expression1. Cloning of the NF-E2 p45 protein has revealed that it contains a basic region–leucine zipper (b-zip) domain which associates with another unidentified protein (of relative molecular mass 18,000) to form functional NF-E2 (ref. 2). We show here that products of the maf proto-oncogene family3–5, MafF, MafG and MafK (the small Maf proteins) which possess a b-zip DNA-binding domain but lack a canonical transactivation domain3, directly control the DNA-binding properties of p45 by heterodimeric association with p45. Whereas homodimers of the small Maf proteins act as negative regulators, heterodimers composed of Maf and p45 support active transcription in vivo. These results indicate that one (or all) of the small Maf proteins is the second constituent chain required for NF-E2 activity, and that negative as well as positive regulation can be achieved through an NF-E2 site, depending on the equilibrium concentrations of p45 and the Maf proteins inside erythroid cells.

417 citations

Journal ArticleDOI
TL;DR: A double-planed structure of deep seismic zone has been found over a wide area more then 300 km × 200 km in the Tohoku District, the northeastern part of Honshu, Japan.

417 citations


Authors

Showing all 72477 results

NameH-indexPapersCitations
John Q. Trojanowski2261467213948
Aaron R. Folsom1811118134044
Marc G. Caron17367499802
Masayuki Yamamoto1711576123028
Kenji Watanabe1672359129337
Rodney S. Ruoff164666194902
Frederik Barkhof1541449104982
Takashi Taniguchi1522141110658
Yoshio Bando147123480883
Thomas P. Russell141101280055
Ali Khademhosseini14088776430
Marco Colonna13951271166
David H. Barlow13378672730
Lin Gu13086856157
Yoichiro Iwakura12970564041
Network Information
Related Institutions (5)
Osaka University
185.6K papers, 5.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

96% related

Kyoto University
217.2K papers, 6.5M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022754
20216,412
20206,426
20196,076
20185,898