Institution
Tokai University
Education•Tokyo, Tôkyô, Japan•
About: Tokai University is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Transplantation & Population. The organization has 13749 authors who have published 26451 publications receiving 513500 citations. The organization is also known as: Tōkai Daigaku & Tōkai.
Topics: Transplantation, Population, Laser, Cancer, Thin film
Papers published on a yearly basis
Papers
More filters
Duke University1, Boston University2, Bristol-Myers Squibb3, Lenox Hill Hospital4, Oslo University Hospital5, University of California, San Francisco6, University of Alberta7, University of Missouri8, University of New Mexico9, Mayo Clinic10, Tokai University11, Goethe University Frankfurt12, University of Adelaide13, Charles University in Prague14, Autonomous University of Madrid15, St. John's Medical College16, Uppsala University17
TL;DR: In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality.
Abstract: A b s t r ac t Background Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin. Methods In this randomized, double-blind trial, we compared apixaban (at a dose of 5 mg twice daily) with warfarin (target international normalized ratio, 2.0 to 3.0) in 18,201 patients with atrial fibrillation and at least one additional risk factor for stroke. The primary outcome was ischemic or hemorrhagic stroke or systemic em - bolism. The trial was designed to test for noninferiority, with key secondary objec - tives of testing for superiority with respect to the primary outcome and to the rates of major bleeding and death from any cause. Results The median duration of follow-up was 1.8 years. The rate of the primary outcome was 1.27% per year in the apixaban group, as compared with 1.60% per year in the war - farin group (hazard ratio with apixaban, 0.79; 95% confidence interval (CI), 0.66 to 0.95; P<0.001 for noninferiority; P = 0.01 for superiority). The rate of major bleeding was 2.13% per year in the apixaban group, as compared with 3.09% per year in the warfarin group (hazard ratio, 0.69; 95% CI, 0.60 to 0.80; P<0.001), and the rates of death from any cause were 3.52% and 3.94%, respectively (hazard ratio, 0.89; 95% CI, 0.80 to 0.99; P = 0.047). The rate of hemorrhagic stroke was 0.24% per year in the apixaban group, as compared with 0.47% per year in the warfarin group (hazard ra - tio, 0.51; 95% CI, 0.35 to 0.75; P<0.001), and the rate of ischemic or uncertain type of stroke was 0.97% per year in the apixaban group and 1.05% per year in the warfarin group (hazard ratio, 0.92; 95% CI, 0.74 to 1.13; P = 0.42). Conclusions In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality. (Funded by Bristol-Myers Squibb and Pfizer; ARISTOTLE ClinicalTrials.gov number, NCT00412984.)
7,154 citations
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes.
For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy.
Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.
5,187 citations
Daniel J. Klionsky1, Fábio Camargo Abdalla2, Hagai Abeliovich3, Robert T. Abraham4 +1284 more•Institutions (463)
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
4,316 citations
University of Tokyo1, Boston University2, Brookhaven National Laboratory3, University of California, Irvine4, California State University5, George Mason University6, Gifu University7, University of Hawaii at Manoa8, Kobe University9, Los Alamos National Laboratory10, Louisiana State University11, University of Maryland, College Park12, University of Chicago13, Stony Brook University14, Niigata University15, Osaka University16, Seoul National University17, Tohoku University18, Tokai University19, Tokyo Institute of Technology20, University of Warsaw21, University of Washington22, Stanford University23
Abstract: We present an analysis of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor ${\ensuremath{
u}}_{\ensuremath{\mu}}\ensuremath{\leftrightarrow}{\ensuremath{
u}}_{\ensuremath{\tau}}$ oscillations with ${sin}^{2}2\ensuremath{\theta}g0.82$ and $5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}l\ensuremath{\Delta}{m}^{2}l6\ifmmode\times\else\texttimes\fi{}1{0}^{\ensuremath{-}3}\mathrm{eV}{}^{2}$ at 90% confidence level.
3,784 citations
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
3,753 citations
Authors
Showing all 13813 results
Name | H-index | Papers | Citations |
---|---|---|---|
Yusuke Nakamura | 179 | 2076 | 160313 |
Michael G. Rosenfeld | 178 | 504 | 107707 |
Ira Pastan | 160 | 1286 | 110069 |
Ko Okumura | 134 | 1057 | 67530 |
Masatsugu Hori | 113 | 874 | 48028 |
Toshiro Fujita | 102 | 788 | 46116 |
Carmine Zoccali | 99 | 813 | 36774 |
Agnes B. Fogo | 98 | 578 | 38840 |
John W. Baynes | 93 | 222 | 32818 |
Takao Shimizu | 93 | 518 | 35706 |
Koji Uchida | 91 | 423 | 31663 |
Mitsuhiko Ikura | 89 | 316 | 34132 |
George R. Pettit | 89 | 848 | 31759 |
Gillian P. Bates | 89 | 257 | 47820 |
Edward S. Mocarski | 88 | 305 | 24356 |