scispace - formally typeset
Search or ask a question

Showing papers by "Tokyo Institute of Technology published in 2007"


Journal ArticleDOI
TL;DR: The research focuses on the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001.
Abstract: Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related to water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy workedmore » as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less

2,921 citations


Journal ArticleDOI
TL;DR: The chiral bifunctional molecular catalyst promoted reduction is now realized to be a powerful tool to access chiral compounds in organic synthetic procedures in both academia and industry.
Abstract: Recent development of conceptually new chiral bifunctional transition metal based catalysts for asymmetric reductive transformations is described. The chiral bifunctional molecular catalyst promoted reduction is now realized to be a powerful tool to access chiral compounds in organic synthetic procedures in both academia and industry. Based on structural investigation of the actual catalyst and its intermediates and a deep understanding of the reaction mechanism, this asymmetric reduction system can be widely used to produce valuable chiral alcohols and is now is applicable to commercial scale production.

1,005 citations


Journal ArticleDOI
01 May 2007
TL;DR: In this article, unique electron transport properties of transparent amorphous oxide semiconductors (TAOS) for TFT performance along with their material design concept are described. And the essential importance of indium ion for emergence of high field effect mobility on the basis of recent results on electronic structure calculation was emphasized.
Abstract: This paper briefly describes unique electron transport properties of transparent amorphous oxide semiconductors (TAOS) for TFT performance along with our material design concept. Emphasized is essential importance of indium ion for emergence of high field effect mobility on the basis of recent results on electronic structure calculation on amorphous InGaZnO4.

947 citations


Journal ArticleDOI
Kazuhisa Mitsuda, Mark W. Bautz1, Hajime Inoue, Richard L. Kelley2, Katsuji Koyama3, Hideyo Kunieda4, Kazuo Makishima5, Yoshiaki Ogawara, Robert Petre2, Tadayuk Takahashi, Hiroshi Tsunemi6, Nicholas E. White2, Naohisa Anabuki6, Lorella Angelini2, Keith A. Arnaud2, Hisamitsu Awaki7, Aya Bamba, Kevin R. Boyce2, Gregory V. Brown2, Kai Wing Chan2, Jean Cottam2, Tadayasu Dotani, John P. Doty, Ken Ebisawa, Yuichiro Ezoe, Andrew C. Fabian8, Enectali Figueroa2, Ryuichi Fujimoto, Yasushi Fukazawa9, Tae Furusho, Akihiro Furuzawa4, Keith C. Gendreau2, Richard E. Griffiths10, Yoshito Haba4, Kenji Hamaguchi2, Ilana M. Harrus2, Günther Hasinger11, Isamu Hatsukade12, Kiyoshi Hayashida4, Patrick Henry, Junko S. Hiraga, Stephen S. Holt13, Ann Hornschemeier2, John P. Hughes14, Una Hwang2, Manabu Ishida15, Yoshitaka Ishisaki15, Naoki Isobe, Masayuki Itoh16, Naoko Iyomoto2, Steven M. Kahn17, Tuneyoshi Kamae17, Hideaki Katagiri9, Jun Kataoka18, Haruyoshi Katayama, Nobuyuki Kawai18, Caroline Kllbourne2, Kenzo Kinugasa, Steve Klssel1, Shunji Kitamoto19, Mitsuhiro Kohama, Takayoshi Kohmura20, Motohide Kokubun5, Taro Kotani18, J. Kotoku18, Aya Kubota5, Greg Madejski17, Yoshitomo Maeda, Fumiyoshi Makino, Alex Markowitz2, Chiho Matsumoto4, Hironori Matsumoto3, Masaru Matsuoka, Kyoko Matsushita21, Dan McCammon22, Tatehiko Mihara, Kazutami Misakl11, Emi Miyata6, Tsunefumi Mizuno9, Koji Mori12, Hideyuki Mori3, Mikio Morii, Harvey Moseley2, Koji Mukai2, Hiroshi Murakami, Toshio Murakami23, Richard Mushotzky2, Fumiaki Nagase, M. Namiki6, Hitoshi Negoro24, Kazuhiro Nakazawa, John A. Nousek25, Takashi Okajima2, Yasushi Ogasaka4, Takaya Ohashi15, T. Oshima15, Naomi Ota, Masanobu Ozaki, H. Ozawa6, Arvind Parmar26, W. D. Pence2, F. Scott Porter2, James Reeves2, George R. Ricker1, Ikuya Sakurai4, Wilton T. Sanders, Atsushi Senda, Peter J. Serlemitsos2, Ryo Shibata4, Yang Soong2, Randall K. Smith2, Motoko Suzuki, Andrew Szymkowiak27, Hiromitsu Takahashi9, Toru Tamagawa, Keisuke Tamura4, Takayuki Tamura, Yasuo Tanaka11, Makoto Tashiro28, Yuzuru Tawara4, Yukikatsu Terada, Yuichi Terashima, Hiroshi Tomida, Ken'ichi Torii6, Yohko Tsuboi29, Masahiro Tsujimoto19, Takeshi Go Tsuru3, Martin J. L. Turner30, Yoshihiro Ueda3, Shiro Ueno, M. Ueno18, Shin'ichiro Uno31, Yuji Urata28, Shin Watanabe, Norimasa Yamamoto4, Kazutaka Yamaoka32, Noriko Y. Yamasaki, Koujun Yamashita4, Makoto Yamauchi12, Shigeo Yamauchi33, Tahir Yaqoob2, Daisuke Yonetoku23, Atsumasa Yoshida32 
TL;DR: In this paper, the authors summarized the spacecraft, in-orbit performance, operations, and data processing that are related to observations of the Suzaku X-ray observatory, including high-sensitivity wide-band Xray spectroscopy.
Abstract: High-sensitivity wide-band X-ray spectroscopy is the key feature of the Suzaku X-ray observatory, launched on 2005 July 10. This paper summarizes the spacecraft, in-orbit performance, operations, and data processing that are related to observations. The scientific instruments, the high-throughput X-ray telescopes, X-ray CCD cameras, non-imaging hard X-ray detector are also described.

908 citations


Journal ArticleDOI
TL;DR: This Review focuses on light as an energy source and describes the recent progress in the area of soft materials that can convert light energy into mechanical energy directly (photomechanical effect), especially the photomechanICAL effects of LCEs with a view to applications for light-driven LCE actuators.
Abstract: Muscle is a transducer that can convert chemical energy into mechanical motion. To construct artificial muscles, it is desirable to use soft materials with high mechanical flexibility and durability rather than hard materials such as metals. For effective muscle-like actuation, materials with stratified structures and high molecular orders are necessary. Liquid-crystalline elastomers (LCEs) are superior soft materials that possess both the order of liquid crystals and the elasticity of elastomers (as they contain polymer networks). With the aid of LCEs, it is possible to convert small amounts of external energy into macroscopic amounts of mechanical energy. In this Review, we focus on light as an energy source and describe the recent progress in the area of soft materials that can convert light energy into mechanical energy directly (photomechanical effect), especially the photomechanical effects of LCEs with a view to applications for light-driven LCE actuators.

853 citations


Journal ArticleDOI
TL;DR: The present approach using a 2DEG provides a new route to realize practical thermoelectric materials without the use of toxic heavy elements and enhances the Seebeck coefficient without reducing the electrical conductivity.
Abstract: Enhancement of the Seebeck coefficient (S ) without reducing the electrical conductivity (sigma) is essential to realize practical thermoelectric materials exhibiting a dimensionless figure of merit (ZT=S2 x sigma x T x kappa-1) exceeding 2, where T is the absolute temperature and kappa is the thermal conductivity. Here, we demonstrate that a high-density two-dimensional electron gas (2DEG) confined within a unit cell layer thickness in SrTiO(3) yields unusually large |S|, approximately five times larger than that of SrTiO(3) bulks, while maintaining a high sigma2DEG. In the best case, we observe |S|=850 microV K-1 and sigma2DEG=1.4 x 10(3) S cm-1. In addition, by using the kappa of bulk single-crystal SrTiO(3) at room temperature, we estimate ZT approximately 2.4 for the 2DEG, corresponding to ZT approximately 0.24 for a complete device having the 2DEG as the active region. The present approach using a 2DEG provides a new route to realize practical thermoelectric materials without the use of toxic heavy elements.

850 citations


Journal ArticleDOI
Hiroshi Murakami1, Hajime Baba1, Peter Barthel2, David L. Clements3, Martin Cohen4, Yasuo Doi5, Keigo Enya1, E. Figueredo6, Naofumi Fujishiro1, Naofumi Fujishiro5, Hideaki Fujiwara5, Mikio Fujiwara7, Pedro García-Lario8, Tomotsugu Goto1, Sunao Hasegawa1, Yasunori Hibi9, Takanori Hirao9, Norihisa Hiromoto10, Seung Soo Hong11, Koji Imai1, Miho N. Ishigaki1, Masateru Ishiguro11, Daisuke Ishihara5, Yoshifusa Ita1, Woong-Seob Jeong1, Kyung Sook Jeong11, Hidehiro Kaneda1, Hirokazu Kataza1, Mitsunobu Kawada9, Toshihide Kawai9, Akiko Kawamura9, Martin F. Kessler8, Do Kester12, Tsuneo Kii1, Dong Chan Kim13, Woojung Kim1, Hisato Kobayashi1, Hisato Kobayashi5, Bon Chul Koo11, Suk Minn Kwon14, Hyung Mok Lee11, Rosario Lorente8, Sin'itirou Makiuti1, Hideo Matsuhara1, Toshio Matsumoto1, Hiroshi Matsuo15, Shuji Matsuura1, Thomas G. Müller16, N. Murakami9, Hirohisa Nagata1, Takao Nakagawa1, T. Naoi1, Masanao Narita1, Manabu Noda17, Sang Hoon Oh11, Akira Ohnishi1, Youichi Ohyama1, Yoko Okada1, Haruyuki Okuda1, S. J. Oliver18, Takashi Onaka5, Takafumi Ootsubo9, Shinki Oyabu1, Soojong Pak19, Yong-Sun Park11, Chris P. Pearson1, Chris P. Pearson8, Michael Rowan-Robinson3, Toshinobu Saito5, Toshinobu Saito1, Itsuki Sakon5, Alberto Salama8, Shinji Sato9, Richard S. Savage18, Stephen Serjeant6, Hiroshi Shibai9, Mai Shirahata1, Jungjoo Sohn11, Toyoaki Suzuki5, Toyoaki Suzuki1, Toshinobu Takagi1, Hidenori Takahashi, Toshihiko Tanabe5, Tsutomu T. Takeuchi9, Satoshi Takita20, Satoshi Takita1, Matthew Thomson18, Kazunori Uemizu1, Munetaka Ueno5, Fumihiko Usui1, Eva Verdugo8, Takehiko Wada1, Lingyu Wang3, Toyoki Watabe9, Hidenori Watarai1, Glenn J. White21, Glenn J. White6, Issei Yamamura1, C. Yamauchi1, Akiko Yasuda1, Akiko Yasuda22 
TL;DR: AKARI as mentioned in this paper, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year, and has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from mid- to far-infrared.
Abstract: AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from mid- to far-infrared. The instruments also have a capability for imaging and spectroscopy in the wavelength range 2-180 mu m in the pointed observation mode, occasionally inserted into a continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90% of the whole sky with a higher spatial resolution and a wider wavelength coverage than that of the previous IRAS all-sky survey. Point-source catalogues of the All-Sky Survey will be released to the astronomical community. Pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional future heritage of this mission.

844 citations


Journal Article
TL;DR: This paper proposes a new method called importance weighted cross validation (IWCV), for which its unbiasedness even under the covariate shift is proved, and the IWCV procedure is the only one that can be applied for unbiased classification under covariates.
Abstract: A common assumption in supervised learning is that the input points in the training set follow the same probability distribution as the input points that will be given in the future test phase However, this assumption is not satisfied, for example, when the outside of the training region is extrapolated The situation where the training input points and test input points follow different distributions while the conditional distribution of output values given input points is unchanged is called the covariate shift Under the covariate shift, standard model selection techniques such as cross validation do not work as desired since its unbiasedness is no longer maintained In this paper, we propose a new method called importance weighted cross validation (IWCV), for which we prove its unbiasedness even under the covariate shift The IWCV procedure is the only one that can be applied for unbiased classification under covariate shift, whereas alternatives to IWCV exist for regression The usefulness of our proposed method is illustrated by simulations, and furthermore demonstrated in the brain-computer interface, where strong non-stationarity effects can be seen between training and test sessions

807 citations


Proceedings Article
03 Dec 2007
TL;DR: This paper proposes a direct importance estimation method that does not involve density estimation and is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized.
Abstract: A situation where training and test samples follow different input distributions is called covariate shift. Under covariate shift, standard learning methods such as maximum likelihood estimation are no longer consistent—weighted variants according to the ratio of test and training input densities are consistent. Therefore, accurately estimating the density ratio, called the importance, is one of the key issues in covariate shift adaptation. A naive approach to this task is to first estimate training and test input densities separately and then estimate the importance by taking the ratio of the estimated densities. However, this naive approach tends to perform poorly since density estimation is a hard task particularly in high dimensional cases. In this paper, we propose a direct importance estimation method that does not involve density estimation. Our method is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized. Simulations illustrate the usefulness of our approach.

785 citations


Journal ArticleDOI
TL;DR: In this paper, a bidirectional dc-dc converter suitable for an energy storage system with an additional function of galvanic isolation is presented, where an electric double layer capacitor is directly connected to a dc side of the converter without any chopper circuit.
Abstract: This paper addresses a bidirectional dc-dc converter suitable for an energy storage system with an additional function of galvanic isolation. An energy storage device such as an electric double layer capacitor is directly connected to a dc side of the dc-dc converter without any chopper circuit. Nevertheless, the dc-dc converter can continue operating when the voltage across the energy storage device drops along with its discharge. Theoretical calculation and experimental measurement reveal that power loss and peak current impose limitations on a permissible dc-voltage range. This information may be useful in design of the dc-dc converter. Experimental results verify proper charging and discharging operation obtained from a 200-V, 2.6-kJ laboratory model of the energy storage system. Moreover, the dc-dc converter can charge the capacitor bank from zero to the rated voltage without any external precharging circuit.

675 citations


Journal ArticleDOI
TL;DR: In this paper, a bidirectional isolated dc-dc converter considered as a core circuit of 3.3kV/6.6kV high-power-density power conversion systems in the next generation is described.
Abstract: This paper describes a bidirectional isolated dc-dc converter considered as a core circuit of 3.3-kV/6.6-kV high-power-density power conversion systems in the next generation. The dc-dc converter is intended to use power switching devices based on silicon carbide (SiC) and/or gallium nitride, which will be available on the market in the near future. A 350-V, 10-kW and 20 kHz dc-dc converter is designed, constructed and tested. It consists of two single-phase full-bridge converters with the latest trench-gate insulated gate bipolar transistors and a 20-kHz transformer with a nano-crystalline soft-magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full-bridge converters. The overall efficiency from the dc-input to dc-output terminals is accurately measured to be as high as 97%, excluding gate drive and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC-based power switching devices. Loss analysis clarifies that the use of SiC-based power devices may bring a significant reduction in conducting and switching losses to the dc-dc converter. As a result, the overall efficiency may reach 99% or higher

Journal ArticleDOI
TL;DR: In this paper, a three-phase transformerless cascade PWM static synchronous compensator (STATCOM) is proposed for installation on industrial and utility power distribution systems, which devotes itself to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors.
Abstract: This paper presents a three-phase transformerless cascade pulsewidth-modulation (PWM) static synchronous compensator (STATCOM) intended for installation on industrial and utility power distribution systems. It proposes a control algorithm that devotes itself not only to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors. The control algorithm based on a phase-shifted carrier modulation strategy is prominent in having no restriction on the cascade number. Experimental waveforms verify that a 200-V 10-kVA cascade PWM STATCOM with star configuration has the capability of inductive to capacitive (or capacitive to inductive) operation at the rated reactive power of 10 kVA within 20 ms while keeping the nine dc mean voltages controlled and balanced even during the transient state.

Journal ArticleDOI
TL;DR: Combettes and Hirstoaga as mentioned in this paper introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the fixed points of a nonexpansive mapping in a Hilbert space.

Journal ArticleDOI
Pengju Pan1, Weihua Kai1, Bo Zhu1, Tungalag Dong1, Yoshio Inoue1 
TL;DR: In this article, the effect of molecular weight (MW) on the polymorphous crystallization and melting behavior of poly(l-lactide) were systemically studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), and time-resolved Fourier transform infrared (FTIR) spectroscopy.
Abstract: The effect of molecular weight (MW) on the polymorphous crystallization and melting behavior of poly(l-lactide) (PLLA) were systemically studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), and time-resolved Fourier transform infrared (FTIR) spectroscopy. It was found that the polymorphism of PLLA is not influenced much by MW, and the α‘- and α-form crystals are produced at low and high crystallization temperature (Tc), respectively, regardless of the MW. However, MW significantly affects the crystallization kinetics, and the crystallization rate reduces greatly with MW increasing. Moreover, the Tc- and MW-dependent melting behavior of PLLA was clarified with combining the DSC and FTIR results. It was found that the α‘- to α-crystalline phase transition occurs prior to the dominant melting in both the low- and high-MW PLLA crystallized at low Tc. Unlike the high-MW PLLA, in low-MW PLLA crystallized at low Tc, the α‘-form crystals only...

Journal ArticleDOI
TL;DR: In this article, a review of recent research progress on new transparent conductive oxide (TCO) materials and electronic and optoelectronic devices based on these materials is presented along with the fabrication method of epitaxial thin films of these materials.

Journal ArticleDOI
TL;DR: In this article, a framework for the Monte-Carlo simulation of X-Ray Telescopes (XRT) and X-ray Imaging Spectrometers (XIS) onboard Suzaku was developed for the scientific analysis of spatially and spectroscopically complex celestial sources.
Abstract: We have developed a framework for the Monte-Carlo simulation of the X-Ray Telescopes (XRT) and the X-ray Imaging Spectrometers (XIS) onboard Suzaku, mainly for the scientific analysis of spatially and spectroscopically complex celestial sources. A photon-by-photon instrumental simulator is built on the ANL platform, which has been successfully used in ASCA data analysis. The simulator has a modular structure, in which the XRT simulation is based on a ray-tracing library, while the XIS simulation utilizes a spectral “Redistribution Matrix File” (RMF), generated separately by other tools. Instrumental characteristics and calibration results, e.g., XRT geometry, reflectivity, mutual alignments, thermal shield transmission, build-up of the contamination on the XIS optical blocking filters (OBF), are incorporated as completely as possible. Most of this information is available in the form of the FITS (Flexible Image Transport System) files in the standard calibration database (CALDB). This simulator can also be utilized to generate an “Ancillary Response File” (ARF), which describes the XRT response and the amount of OBF contamination. The ARF is dependent on the spatial distribution of the celestial target and the photon accumulation region on the detector, as well as observing conditions such as the observation date and satellite attitude. We describe principles of the simulator and the ARF generator, and demonstrate their performance in comparison with in-flight data.

Journal ArticleDOI
TL;DR: This review focuses on the study and application of reversible changes in shape that can be achieved with various systems incorporating azobenzene and the wide range of optical and electro-optical switching effects for which good reviews exist elsewhere.
Abstract: The change in shape inducible in some photo-reversible molecules using light can effect powerful changes to a variety of properties of a host material. The most ubiquitous natural molecule for reversible shape change is the rhodopsin–retinal protein system that enables vision, and this is perhaps the quintessential reversible photo-switch. Perhaps the best artificial mimic of this strong photo-switching effect however, for reversibility, speed, and simplicity of incorporation, is azobenzene. This review focuses on the study and application of reversible changes in shape that can be achieved with various systems incorporating azobenzene. This photo-mechanical effect can be defined as the reversible change in shape inducible in some molecules by the adsorption of light, which results in a significant macroscopic mechanical deformation of the host material. Thus, it does not include simple thermal expansion effects, nor does it include reversible but non-mechanical photo-switching or photo-chemistry, nor any of the wide range of optical and electro-optical switching effects for which good reviews exist elsewhere.

Journal ArticleDOI
TL;DR: The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite as mentioned in this paper, which is designed for wide-field deep imaging and low-resolution spectroscopy in the nearto mid-infrared (1.8-5.5 m) channel.
Abstract: The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the nearto mid-infrared (1.8–26.5 m) in the pointed observation mode of AKARI. The IRC is also operated in the survey mode to make an All-Sky Survey at 9 and 18 m. It comprises three channels. The NIR channel (1.8–5.5 m) employs a 512 412 InSb array, whereas both the MIR-S (4.6–13.4 m) and MIR-L (12.6–26.5 m) channels use 256 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 100 100, and they are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about 250 away from the NIR/MIR-S field-of-view. The IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of the IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of the IRC.

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +442 moreInstitutions (48)
TL;DR: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p(T) < 9 GeV/c at midrapidity (y < 0.35) from heavy-flavor (charm and bottom) decays in Au + Au collisions at root s(NN) = 200 GeV as mentioned in this paper.
Abstract: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p(T) < 9 GeV/c at midrapidity (y < 0.35) from heavy-flavor (charm and bottom) decays in Au + Au collisions at root s(NN) = 200 GeV. The nuclear modification factor R-AA relative to p + p collisions shows a strong suppression in central Au + Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy v(2) with respect to the reaction plane is observed for 0.5 < p(T) < 5 GeV/c indicating substantial heavy-flavor elliptic flow. Both R-AA and v(2) show a p(T) dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R-AA(p(T)) and v(2)(p(T)) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +438 moreInstitutions (46)
TL;DR: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities -2.2 < y < 2.2 in Au+Au collisions at root s(NN)=200 GeV as mentioned in this paper.
Abstract: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities -2.2 < y < 2.2 in Au+Au collisions at root s(NN)=200 GeV. The J/psi invariant yield and nuclear modification factor R-AA as a function of centrality, transverse momentum, and rapidity are reported. A suppression of J/psi relative to binary collision scaling of proton-proton reaction yields is observed. Models which describe the lower energy J/psi data at the CERN Super Proton Synchrotron invoking only J/psi destruction based on the local medium density predict a significantly larger suppression at RHIC and more suppression at midrapidity than at forward rapidity. Both trends are contradicted by our data.

Journal ArticleDOI
TL;DR: Responses in medial prefrontal cells of monkeys learning arbitrary action-outcome contingencies may signal the direction and amount of error in prediction of values of executed actions to specify the adjustment in subsequent action selections.
Abstract: To adapt behavior to a changing environment, one must monitor outcomes of executed actions and adjust subsequent actions accordingly. Involvement of the medial frontal cortex in performance monitoring has been suggested, but little is known about neural processes that link performance monitoring to performance adjustment. Here, we recorded from neurons in the medial prefrontal cortex of monkeys learning arbitrary action-outcome contingencies. Some cells preferentially responded to positive visual feedback stimuli and others to negative feedback stimuli. The magnitude of responses to positive feedback stimuli decreased over the course of behavioral adaptation, in correlation with decreases in the amount of prediction error of action values. Therefore, these responses in medial prefrontal cells may signal the direction and amount of error in prediction of values of executed actions to specify the adjustment in subsequent action selections.

Proceedings ArticleDOI
08 May 2007
TL;DR: In this article, a simple heuristics that attempt to merge community structures in a balanced manner can dramatically improve community structure analysis is proposed to improve modularity and scale to a network with 5.5 million users.
Abstract: Community analysis algorithm proposed by Clauset, Newman, and Moore (CNM algorithm) finds community structure in social networks. Unfortunately, CNM algorithm does not scale well and its use is practically limited to networks whose sizes are up to 500,000 nodes. We show that this inefficiency is caused from merging communities in unbalanced manner and that a simple heuristics that attempts to merge community structures in a balanced manner can dramatically improve community structure analysis. The proposed techniques are tested using data sets obtained from existing social networking service that hosts 5.5 million users. We have tested three three variations of the heuristics. The fastest method processes a SNS friendship network with 1 million users in 5 minutes (70 times faster than CNM) and another friendship network with 4 million users in 35 minutes, respectively. Another one processes a network with 500,000 nodes in 50 minutes (7 times faster than CNM), finds community structures that has improved modularity, and scales to a network with 5.5 million.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the thermal structure of the Earth's mantle with a comparison with seismic tomography under the Western Pacific Triangular Zone (WPTZ), showing the presence of two major superplumes and one downwelling.

Journal ArticleDOI
TL;DR: An Arabidopsis thaliana trans-factor and cis-element prediction database that provides co-regulated gene relationships based on co-expressed genes deduced from microarray data and the predicted cis elements to help researchers to clarify the function and regulation of particular genes and gene networks is reported.
Abstract: Publicly available database of co-expressed gene sets would be a valuable tool for a wide variety of experimental designs, including targeting of genes for functional identification or for regulatory investigation. Here, we report the construction of an Arabidopsis thaliana trans-factor and cis-element prediction database (ATTED-II) that provides co-regulated gene relationships based on co-expressed genes deduced from microarray data and the predicted cis elements. ATTED-II (http://www.atted.bio.titech.ac.jp) includes the following features: (i) lists and networks of co-expressed genes calculated from 58 publicly available experimental series, which are composed of 1388 GeneChip data in A.thaliana; (ii) prediction of cis-regulatory elements in the 200 bp region upstream of the transcription start site to predict co-regulated genes amongst the co-expressed genes; and (iii) visual representation of expression patterns for individual genes. ATTED-II can thus help researchers to clarify the function and regulation of particular genes and gene networks.

Journal ArticleDOI
27 Jul 2007-Cell
TL;DR: It is shown by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate.

Journal ArticleDOI
TL;DR: The crystal structures of the key complexes are elucidated by X-ray diffraction, which confirms that they are chiral, and analysis of the (1)H and (13)C NMR spectra unambiguously demonstrates that their conformations are so flexible that the chiral environment of the complexes cannot be maintained in solution at 25 degrees C and that the complexes are achiral under the polymerization conditions.
Abstract: Highly isotactic polylactide or poly(lactic acid) is synthesized in a ring-opening polymerization (ROP) of racemic lactide with achiral salen- and homosalen-aluminum complexes (salenH(2)=N,N'-bis(salicylidene)ethylene-1,2-diamine; homosalenH(2)=N,N'-bis(salicylidene)trimethylene-1,3-diamine). A systematic exploration of ligands demonstrates the importance of the steric influence of the Schiff base moiety on the degree of isotacticity and the backbone for high activity. The complexes prepared in situ are pure enough to apply to the polymerizations without purification. The crystal structures of the key complexes are elucidated by X-ray diffraction, which confirms that they are chiral. However, analysis of the (1)H and (13)C NMR spectra unambiguously demonstrates that their conformations are so flexible that the chiral environment of the complexes cannot be maintained in solution at 25 degrees C and that the complexes are achiral under the polymerization conditions. The flexibility of the backbone in the propagation steps is also documented. Hence, the isotacticity of the polymer occurs due to a chain-end control mechanism. The highest reactivity in the present system is obtained with the homosalen ligand with 2,2-dimethyl substituents in the backbone (ArCH==NCH(2)CMe(2)CH(2)N==CHAr), whereas tBuMe(2)Si substituents at the 3-positions of the salicylidene moieties lead to the highest selectivity (P(meso)=0.9(8); T(m)=210 degrees C). The ratio of the rate constants in the ROPs of racemic lactide and L-lactide is found to correlate with the stereoselectivity in the present system. The complex can be utilized in bulk polymerization, which is the most attractive in industry, although with some loss of stereoselectivity at high temperature, and the afforded polymer shows a higher melting temperature (P(meso)=0.9(2), T(m) up to 189 degrees C) than that of homochiral poly(L-lactide) (T(m)=162-180 degrees C). The "livingness" of the bulk polymerization at 130 degrees C is maintained even at a high conversion (97-98 %) and for an extended polymerization time (1-2 h).

Journal ArticleDOI
TL;DR: In this article, a Halpern type iterative sequence is introduced to find a common fixed point of a family of nonexpansive mappings, and it is shown that such a sequence converges strongly to the common fixed points of a countable family of mappings.
Abstract: In this paper, to find a common fixed point of a family of nonexpansive mappings, we introduce a Halpern type iterative sequence. Then we prove that such a sequence converges strongly to a common fixed point of nonexpansive mappings. Moreover, we apply our result to the problem of finding a common fixed point of a countable family of nonexpansive mappings and the problem of finding a zero of an accretive operator.

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +459 moreInstitutions (49)
TL;DR: In this paper, the scaling of elliptic flow (v(2) with eccentricity, system size, and transverse kinetic energy (KET) was shown to be compatible with hydrodynamic expansion of thermalized fluid.
Abstract: Differential measurements of elliptic flow (v(2)) for Au+Au and Cu+Cu collisions at root s(NN)=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v(2) with eccentricity, system size, and transverse kinetic energy (KET). For KET equivalent to m(T)-m up to similar to 1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KET mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v(2) for both mesons and baryons over the full KET range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KET, rather than transverse momentum.

Journal ArticleDOI
13 Jul 2007-Science
TL;DR: It is shown that damage-induced cohesion is essential for repair in postreplicative cells in yeast and is established genome-wide after induction of a single DSB, and it is controlled by the DNA damage response and cohesin-regulating factors.
Abstract: Sister-chromatid cohesion, established during replication by the protein complex cohesin, is essential for both chromosome segregation and double-strand break (DSB) repair. Normally, cohesion formation is strictly limited to the S phase of the cell cycle, but DSBs can trigger cohesion also after DNA replication has been completed. The function of this damage-induced cohesion remains unknown. In this investigation, we show that damage-induced cohesion is essential for repair in postreplicative cells in yeast. Furthermore, it is established genome-wide after induction of a single DSB, and it is controlled by the DNA damage response and cohesin-regulating factors. We thus define a cohesion establishment pathway that is independent of DNA duplication and acts together with cohesion formed during replication in sister chromatid-based DSB repair.

Journal ArticleDOI
TL;DR: In this article, the nuclear parton distribution functions (NPDFs) are determined by global analyses of experimental data on structure-function ratios F{sub 2}{sup A}/F{sub 1/2/3] and Drell-Yan cross-section ratios {sigma}{sub DY/{sigma ∆/DY ∆ A'}.
Abstract: Nuclear parton distribution functions (NPDFs) are determined by global analyses of experimental data on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A'} and Drell-Yan cross-section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A'}. The analyses are done in the leading order (LO) and next-to-leading order (NLO) of running coupling constant {alpha}{sub s}. Uncertainties of the NPDFs are estimated in both LO and NLO for finding possible NLO improvement. Valence-quark distributions are well determined, and antiquark distributions are also determined at x 0.2. Gluon modifications cannot be fixed at this stage. Although the advantage of the NLO analysis, in comparison with the LO one, is generally the sensitivity to the gluon distributions, gluon uncertainties are almost the same in the LO and NLO. It is because current scaling-violation data are not accurate enough to determine precise nuclear gluon distributions. Modifications of the PDFs in the deuteron are also discussed by including data on the proton-deuteron ratio F{sub 2}{sup D}/F{sub 2}{sup p} in the analysis. A code is provided for calculating the NPDFs and their uncertainties at given x and Q{sup 2} in the LO and NLO.