scispace - formally typeset
Search or ask a question

Showing papers by "Tokyo Institute of Technology published in 2009"


Journal ArticleDOI
W. B. Atwood1, A. A. Abdo2, A. A. Abdo3, Markus Ackermann4  +289 moreInstitutions (37)
TL;DR: The Large Area Telescope (Fermi/LAT) as mentioned in this paper is the primary instrument on the Fermi Gamma-ray Space Telescope, which is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV.
Abstract: (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration with a total depth of 8.6 radiation lengths. The aspect ratio of the tracker (height/width) is 0.4 allowing a large field-of-view (2.4 sr). Data obtained with the LAT are intended to (i) permit rapid notification of high-energy gamma-ray bursts (GRBs) and transients and facilitate monitoring of variable sources, (ii) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (iii) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (iv) localize point sources to 0.3 - 2 arc minutes, (v) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (vi) measure the diffuse isotropic gamma-ray background up to TeV energies, and (vii) explore the discovery space for dark matter.

3,666 citations


Journal ArticleDOI
TL;DR: This Review briefly highlights the various molecular flasks synthesized before focusing on their use as functional molecular containers--specifically for the encapsulation of guest molecules to either engender unusual reactions or unique chemical phenomena.
Abstract: The application of self-assembled hosts as "molecular flasks" has precipitated a surge of interest in the reactivity and properties of molecules within well-defined confined spaces. The facile and modular synthesis of self-assembled hosts has enabled a variety of hosts of differing sizes, shapes, and properties to be prepared. This Review briefly highlights the various molecular flasks synthesized before focusing on their use as functional molecular containers--specifically for the encapsulation of guest molecules to either engender unusual reactions or unique chemical phenomena. Such self-assembled cavities now constitute a new phase of chemistry, which cannot be achieved in the conventional solid, liquid, and gas phases.

1,578 citations


Journal ArticleDOI
TL;DR: The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today.
Abstract: Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.

1,511 citations


Journal ArticleDOI
TL;DR: In this article, two types of pulsewidth-modulated modular multilevel converters (PWM-MMCs) with focus on their circuit configurations and voltage balancing control are investigated.
Abstract: A modular multilevel converter (MMC) is one of the next-generation multilevel converters intended for high- or medium-voltage power conversion without transformers. The MMC is based on cascade connection of multiple bidirectional chopper-cells per leg, thus requiring voltage-balancing control of the multiple floating DC capacitors. However, no paper has made an explicit discussion on voltage-balancing control with theoretical and experimental verifications. This paper deals with two types of pulsewidth-modulated modular multilevel converters (PWM- MMCs) with focus on their circuit configurations and voltage-balancing control. Combination of averaging and balancing controls enables the PWM-MMCs to achieve voltage balancing without any external circuit. The viability of the PWM-MMCs, as well as the effectiveness of the voltage-balancing control, is confirmed by simulation and experiment.

1,506 citations


Journal ArticleDOI

1,161 citations


Journal ArticleDOI
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as mentioned in this paper was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

942 citations


Journal ArticleDOI
A. A. Abdo1, Markus Ackermann2, Marco Ajello2, Magnus Axelsson3  +198 moreInstitutions (28)
TL;DR: In this article, the Fermi Large Area Telescope (Fermi LAT) was used to detect the electron spectrum up to 1 TeV using a diffusive model and a potential local extra component.
Abstract: Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m2 sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E-3.0 and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.

890 citations


Journal ArticleDOI
TL;DR: In this article, a review of recent advances in the processing of microwave ferrites is presented, including self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction.

686 citations


Journal ArticleDOI
TL;DR: The Monitor of All-sky X-ray Image (MAXI) mission is the first astronomical payload to be installed on the Japanese Experiment Module-exposed Facility (JEM-EF or Kibo-EF) on the International Space Station as mentioned in this paper.
Abstract: The Monitor of All-sky X-ray Image (MAXI) mission is the first astronomical payload to be installed on the Japanese Experiment Module — Exposed Facility (JEM-EF or Kibo-EF) on the International Space Station. It has two types of X-ray slit cameras with wide FOVs and two kinds of X-ray detectors consisting of gas proportional counters covering the energy range of 2 to 30 keV and X-ray CCDs covering the energy range of 0.5 to 12 keV. MAXI will be more powerful than any previous X-ray All Sky Monitor payloads, being able to monitor hundreds of Active Galactic Nuclei. A realistic simulation under optimal observation conditions suggests that MAXI will provide all-sky images of X-ray sources of � 20 mCrab (� 7 � 10 � 10 erg cm � 2 s � 1 in the energy band of 2–30 keV) from observations during one ISS orbit (90 min), � 4.5 mCrab for one day, and � 2 mCrab for one week. The final detectability of MAXI could be � 0.2 mCrab for two years, which is comparable to the source confusion limit of the MAXI field of view (FOV). The MAXI objectives are: (1) to alert the community to X-ray novae and transient X-ray sources, (2) to monitor long-term variabilities of X-ray sources, (3) to stimulate multi-wavelength observations of variable objects, (4) to create unbiased X-ray source cataloges, and (5) to observe diffuse cosmic X-ray emissions, especially with better energy resolution for soft X-rays down to 0.5 keV.

669 citations


Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Luca Baldini2, Jean Ballet3  +216 moreInstitutions (45)
27 Mar 2009-Science
TL;DR: The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy, with the largest apparent energy release yet measured.
Abstract: Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

651 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a summary of experimental reports on newly discovered iron-based superconductors as they were known at the end of 2008 and introduce experimental results that reveal basic physical properties in the normal and superconducting states.
Abstract: In this review, the authors present a summary of experimental reports on newly discovered iron-based superconductors as they were known at the end of 2008. At the same time, this paper is intended to be useful for experimenters to know the current status of these superconductors. The authors introduce experimental results that reveal basic physical properties in the normal and superconducting states. The similarities and differences between iron-pnictide superconductors and other unconventional superconductors are also discussed.

Journal ArticleDOI
A. A. Abdo1, Markus Ackermann2, Marco Ajello2, Katsuaki Asano3  +233 moreInstitutions (43)
19 Nov 2009-Nature
TL;DR: The detection of emission up to ∼31 GeV from the distant and short GRB, and no evidence for the violation of Lorentz invariance is found, which disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
Abstract: A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

Book ChapterDOI
01 Feb 2009
TL;DR: In this article, Sample Reweighting, Distribution Matching, Risk Estimates, and Single Class Support Vector Machines (SVM) have been used to estimate risk estimates for single class support vector machines.
Abstract: This chapter contains sections titled: Introduction, Sample Reweighting, Distribution Matching, Risk Estimates, The Connection to Single Class Support Vector Machines, Experiments, Conclusion, Appendix: Proofs

Journal ArticleDOI
TL;DR: In this article, a 6.6-kV battery energy storage system based on a cascade PWM converter with focus on a control method for state-of-charge (SOC) balancing of the battery units is described.
Abstract: Renewable energy sources such as wind turbine generators and photovoltaics produce fluctuating electric power. The fluctuating power can be compensated by installing an energy storage system in the vicinity of these sources. This paper describes a 6.6-kV battery energy storage system based on a cascade pulsewidth-modulation (PWM) converter with focus on a control method for state-of-charge (SOC) balancing of the battery units. A 200-V, 10-kW, 3.6-kWh (13-MJ) laboratory system combining a cascade PWM converter with nine nickel metal hydride (NiMH) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed balancing control.

Journal ArticleDOI
TL;DR: A comprehensive review of the current understanding on (i) polymorphic crystallization and phase transition of biodegradable polyesters, (ii) isomorphic crystallization of poly(3-hydroxybutyrate) and (iii) poly(butylene adipate) random copolyesters, where the effects of comonomer composition and crystallization conditions are highlighted.

Journal ArticleDOI
04 Jun 2009-Nature
TL;DR: It is shown that two cardiac transcription factors, Gata4 and Tbx5, and a cardiac-specific subunit of BAF chromatin-remodelling complexes, Baf60c, can direct ectopic differentiation of mouse mesoderm into beating cardiomyocytes, including the normally non-cardiogenic posterior Mesoderm and the extraembryonic mesod Germ of the amnion.
Abstract: Heart disease is the leading cause of mortality and morbidity in the western world. The heart has little regenerative capacity after damage, leading to much interest in understanding the factors required to produce new cardiac myocytes. Despite a robust understanding of the molecular networks regulating cardiac differentiation, no single transcription factor or combination of factors has been shown to activate the cardiac gene program de novo in mammalian cells or tissues. Here we define the minimal requirements for transdifferentiation of mouse mesoderm to cardiac myocytes. We show that two cardiac transcription factors, Gata4 and Tbx5, and a cardiac-specific subunit of BAF chromatin-remodelling complexes, Baf60c (also called Smarcd3), can direct ectopic differentiation of mouse mesoderm into beating cardiomyocytes, including the normally non-cardiogenic posterior mesoderm and the extraembryonic mesoderm of the amnion. Gata4 with Baf60c initiated ectopic cardiac gene expression. Addition of Tbx5 allowed differentiation into contracting cardiomyocytes and repression of non-cardiac mesodermal genes. Baf60c was essential for the ectopic cardiogenic activity of Gata4 and Tbx5, partly by permitting binding of Gata4 to cardiac genes, indicating a novel instructive role for BAF complexes in tissue-specific regulation. The combined function of these factors establishes a robust mechanism for controlling cellular differentiation, and may allow reprogramming of new cardiomyocytes for regenerative purposes.

Journal ArticleDOI
TL;DR: In this paper, a review of recent developments in optical high-refractive-index polymers and their typical applications in high-tech fields is presented, including the optical dispersion (Abbe number), birefringence and optical transparency.
Abstract: Rapid developments in advanced photonic devices have led to the increasing exploration of high refractive index (high-n) materials, particularly high-refractive-index polymers (HRIP). High refractive indices have been achieved either by introducing substituents with high molar refractions to make intrinsic HRIPs or by combining high-nnanoparticles with polymer matrixes to make HRIP nanocomposites. For intrinsic HRIPs, aromatic rings, sulfur-containing groups, halogens except fluorine and organometallic moieties are often utilized to increase their refractive indices. However, their upper n limitation is usually below 1.80. Incorporation of high-nnanoparticles into polymers seems to be a more promising strategy to achieve a refractive index higher than 1.80; however, the obtained organic–inorganic hybrid materials sometimes suffer from poor storage stability, higher optical loss and poor processability. Besides the refractive index, optical dispersion (Abbe number), birefringence and optical transparency are often involved in designing HRIPs for practical optical fabrications. Therefore, research of HRIPs is becoming an interdisciplinary subject. This feature article reviews recent developments in optical HRIPs and their typical applications in high-tech fields.

Journal ArticleDOI
TL;DR: The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS as discussed by the authors.
Abstract: The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +254 moreInstitutions (38)
TL;DR: In this article, the authors presented the initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than 10-sigma) gamma-ray sources in early-mission data.
Abstract: Following its launch in June 2008, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in 3 months produced a deeper and better-resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than 10-sigma) gamma-ray sources in these data. These are the best-characterized and best-localized gamma-ray sources in the early-mission data.

Journal ArticleDOI
TL;DR: In this paper, the authors present a summary of experimental reports on newly discovered iron-based superconductors as they were known at the end of 2008 and introduce experimental results that reveal basic physical properties in the normal and superconducting states.
Abstract: In this review, the authors present a summary of experimental reports on newly discovered iron-based superconductors as they were known at the end of 2008. At the same time, this paper is intended to be useful for experimenters to know the current status of these superconductors. The authors introduce experimental results that reveal basic physical properties in the normal and superconducting states. The similarities and differences between iron-pnictide superconductors and other unconventional superconductors are also discussed.

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +255 moreInstitutions (44)
TL;DR: In this article, the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory were used to observe the long gamma-ray burst, GRB 090902B.
Abstract: We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. ...

Journal ArticleDOI
TL;DR: The results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
Abstract: Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.

Journal ArticleDOI
27 Feb 2009
TL;DR: The current and future 3D-LSI technologies with through-silicon via (TSV) have the simplest structure and is expected to realize a high-performance, high-functionality, and high-density LSI cube.
Abstract: Recently, the development of three-dimensional large-scale integration (3D-LSI) has been accelerated. Its stage has changed from the research level or limited production level to the investigation level with a view to mass production. The 3D-LSI using through-silicon via (TSV) has the simplest structure and is expected to realize a high-performance, high-functionality, and high-density LSI cube. This paper describes the current and future 3D-LSI technologies with TSV.

Journal ArticleDOI
TL;DR: In this paper, a model involving Pacific-type orogeny was proposed to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly.

Journal ArticleDOI
TL;DR: In this article, commercial nanoparticles supplied by Chemicell, Micromod and Bayer-Schering were characterised with regard to their nanocrystalline diameter, hydrodynamic diameter, total iron content and relative ferrous iron content.


Journal ArticleDOI
TL;DR: In this paper, the authors identify two major types of subduction zones on the globe: the Circum-Pacific subduction zone and the Tethyan subduction Zone and propose the tectonic framework leading to the future supercontinent Amasia 250 million years from present, with the present day Western Pacific region as its frontier.

Journal ArticleDOI
TL;DR: A new adaptation algorithm is proposed called constrained structural maximum a posteriori linear regression (CSMAPLR) whose derivation is based on the knowledge obtained in this analysis and on the results of comparing several conventional adaptation algorithms.
Abstract: In this paper, we analyze the effects of several factors and configuration choices encountered during training and model construction when we want to obtain better and more stable adaptation in HMM-based speech synthesis. We then propose a new adaptation algorithm called constrained structural maximum a posteriori linear regression (CSMAPLR) whose derivation is based on the knowledge obtained in this analysis and on the results of comparing several conventional adaptation algorithms. Here, we investigate six major aspects of the speaker adaptation: initial models; the amount of the training data for the initial models; the transform functions, estimation criteria, and sensitivity of several linear regression adaptation algorithms; and combination algorithms. Analyzing the effect of the initial model, we compare speaker-dependent models, gender-independent models, and the simultaneous use of the gender-dependent models to single use of the gender-dependent models. Analyzing the effect of the transform functions, we compare the transform function for only mean vectors with that for mean vectors and covariance matrices. Analyzing the effect of the estimation criteria, we compare the ML criterion with a robust estimation criterion called structural MAP. We evaluate the sensitivity of several thresholds for the piecewise linear regression algorithms and take up methods combining MAP adaptation with the linear regression algorithms. We incorporate these adaptation algorithms into our speech synthesis system and present several subjective and objective evaluation results showing the utility and effectiveness of these algorithms in speaker adaptation for HMM-based speech synthesis.

Journal ArticleDOI
TL;DR: ATTED-II as mentioned in this paper is a database of gene coexpression in Arabidopsis that can be used to design a wide variety of experiments, including the prioritization of genes for functional identification or for studies of regulatory relationships.
Abstract: ATTED-II (http://atted.jp) is a database of gene coexpression in Arabidopsis that can be used to design a wide variety of experiments, including the prioritization of genes for functional identification or for studies of regulatory relationships. Here, we report updates of ATTED-II that focus especially on functionalities for constructing gene networks with regard to the following points: (i) introducing a new measure of gene coexpression to retrieve functionally related genes more accurately, (ii) implementing clickable maps for all gene networks for step-by-step navigation, (iii) applying Google Maps API to create a single map for a large network, (iv) including information about protein-protein interactions, (v) identifying conserved patterns of coexpression and (vi) showing and connecting KEGG pathway information to identify functional modules. With these enhanced functions for gene network representation, ATTED-II can help researchers to clarify the functional and regulatory networks of genes in Arabidopsis.

Journal ArticleDOI
TL;DR: In this article, superhydrophobic nanoporous polydivinylbenzene materials are successfully synthesized by a novel solvothermal route, which exhibit high surface area, large pore volume, controllable average pore size, super-hydrophobicity and superoleophilicity.