scispace - formally typeset
Search or ask a question

Showing papers by "Tokyo Institute of Technology published in 2017"


Book ChapterDOI
20 Aug 2017
TL;DR: “Ouroboros” is presented, the first blockchain protocol based on proof of stake with rigorous security guarantees and it is proved that, given this mechanism, honest behavior is an approximate Nash equilibrium, thus neutralizing attacks such as selfish mining.
Abstract: We present “Ouroboros”, the first blockchain protocol based on proof of stake with rigorous security guarantees. We establish security properties for the protocol comparable to those achieved by the bitcoin blockchain protocol. As the protocol provides a “proof of stake” blockchain discipline, it offers qualitative efficiency advantages over blockchains based on proof of physical resources (e.g., proof of work). We also present a novel reward mechanism for incentivizing Proof of Stake protocols and we prove that, given this mechanism, honest behavior is an approximate Nash equilibrium, thus neutralizing attacks such as selfish mining.

1,314 citations


Journal ArticleDOI
TL;DR: In this article, a high-accuracy global digital elevation model (DEM) was proposed by eliminating major error components from existing DEMs, such as absolute bias, stripe noise, speckle noise, and tree height bias.
Abstract: Spaceborne digital elevation models (DEMs) are a fundamental input for many geoscience studies, but they still include nonnegligible height errors Here we introduce a high-accuracy global DEM at 3″ resolution (~90 m at the equator) by eliminating major error components from existing DEMs We separated absolute bias, stripe noise, speckle noise, and tree height bias using multiple satellite data sets and filtering techniques After the error removal, land areas mapped with ±2 m or better vertical accuracy were increased from 39% to 58% Significant improvements were found in flat regions where height errors larger than topography variability, and landscapes such as river networks and hill-valley structures, became clearly represented We found the topography slope of previous DEMs was largely distorted in most of world major floodplains (eg, Ganges, Nile, Niger, and Mekong) and swamp forests (eg, Amazon, Congo, and Vasyugan) The newly developed DEM will enhance many geoscience applications which are terrain dependent

680 citations


Journal ArticleDOI
TL;DR: It is shown that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deepLearning.
Abstract: The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. “Deep learning”, or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.

623 citations


Journal ArticleDOI
Mansi M. Kasliwal1, Ehud Nakar2, Leo Singer3, Leo Singer4, David L. Kaplan5, David O. Cook1, A. Van Sistine5, R. M. Lau1, Christoffer Fremling1, Ore Gottlieb2, Jacob E. Jencson1, Scott M. Adams1, U. Feindt6, Kenta Hotokezaka7, Sourav Ghosh5, Daniel A. Perley8, Po-Chieh Yu9, Tsvi Piran10, James R. Allison11, James R. Allison12, G. C. Anupama13, Arvind Balasubramanian14, Keith W. Bannister15, John Bally16, Jennifer Barnes17, Sudhanshu Barway, Eric C. Bellm18, Varun Bhalerao19, Deb Sankar Bhattacharya20, Nadejda Blagorodnova1, Joshua S. Bloom21, Joshua S. Bloom22, Patrick Brady5, Chris Cannella1, Deep Chatterjee5, S. B. Cenko3, S. B. Cenko4, B. E. Cobb23, Chris M. Copperwheat8, A. Corsi24, Kaushik De1, Dougal Dobie12, Dougal Dobie15, Dougal Dobie11, S. W. K. Emery25, Phil Evans26, Ori D. Fox27, Dale A. Frail28, C. Frohmaier29, C. Frohmaier30, Ariel Goobar6, Gregg Hallinan1, Fiona A. Harrison1, George Helou1, Tanja Hinderer31, Anna Y. Q. Ho1, Assaf Horesh10, Wing-Huen Ip7, Ryosuke Itoh32, Daniel Kasen21, Hyesook Kim, N. P. M. Kuin25, Thomas Kupfer1, Christene Lynch11, Christene Lynch12, K. K. Madsen1, Paolo A. Mazzali8, Paolo A. Mazzali33, Adam A. Miller34, Adam A. Miller35, Kunal Mooley36, Tara Murphy12, Tara Murphy11, Chow-Choong Ngeow9, David A. Nichols31, Samaya Nissanke31, Peter Nugent22, Peter Nugent21, Eran O. Ofek37, H. Qi5, Robert M. Quimby38, Robert M. Quimby39, Stephan Rosswog6, Florin Rusu40, Elaine M. Sadler11, Elaine M. Sadler12, Patricia Schmidt31, Jesper Sollerman6, Iain A. Steele8, A. R. Williamson31, Y. Xu1, Lin Yan1, Yoichi Yatsu32, C. Zhang5, Weijie Zhao40 
22 Dec 2017-Science
TL;DR: It is demonstrated that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis, which is dissimilar to classical short gamma-ray bursts with ultrarelativistic jets.
Abstract: Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

579 citations


Journal ArticleDOI
TL;DR: In this article, the most recent advances related to these issues are discussed in this review, and key parameters controlling the catalysis efficiency have been deciphered, opening the way to the design of future, more efficient and durable catalysts, as well as to the development of electrochemical or photoelectrochemical cells, all being key steps for the emergence of applied devices.
Abstract: Electrochemical and photochemical reduction of CO2, or a smart combination of both, are appealing approaches for the storage of renewable, intermittent energies and may lead to the production of fuels and of value-added chemicals. By using only earth-abundant metal (Cu, Ni, Co, Mn, Fe) complexes, cheap electrodes and/or cheap sacrificial electron donors and visible light sensitizers, systems functioning with molecular catalysts have been recently designed, showing promising results, in particular, for the two-electron reduction of the carbon dioxide. By combining experimental and mechanistic studies, key parameters controlling the catalysis efficiency have been deciphered, opening the way to the design of future, more efficient and durable catalysts, as well as to the development of electrochemical or photoelectrochemical cells, all being key steps for the emergence of applied devices. The most recent advances related to these issues are discussed in this review.

489 citations


Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2845 moreInstitutions (197)
TL;DR: This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
Abstract: During 2015 the ATLAS experiment recorded 3.8 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, respons ...

488 citations


Journal ArticleDOI
TL;DR: In this paper, the authors classified various aromatic materials with room temperature phosphorescence (RTP) characteristics in terms of their radiative rates and radiationless rates from the lowest triplet excited state (T1), taking the presence and absence of heavy atoms and charge transfer characteristics at T1 into consideration.
Abstract: Room temperature phosphorescence (RTP), which has a much longer emission lifetime than fluorescence, often enables unique material characteristics and fabrication of state-of-the-art optoelectronic devices that cannot be realized using conventional fluorescent materials. The triplet exciton characteristics related to the appearance of efficient RTP also often provide intrinsic intra- and inter-molecular physical information about the materials. This article reviews recently reported aromatic materials that present RTP characteristics. Various aromatic materials with RTP characteristics are classified in terms of their radiative rates and radiationless rates from the lowest triplet excited state (T1) while taking the presence and absence of heavy atoms and charge transfer characteristics at T1 into consideration. Statistical arrangements based on physical factors of RTP materials indicate that the recent appearance of RTP in various metal-free aromatic structures is related to a large reduction in quenching caused by strong intermolecular interaction between the aromatics and the surrounding materials; additionally, intrinsic factors of the aromatics including the radiative rate and the nonradiative rate caused by intramolecular vibration are still not well controlled. Intrinsic control of these rates is important for overall control of the RTP yield and lifetime for potential material applications. Finally, recent applications using the RTP characteristics are highlighted.

469 citations



Journal ArticleDOI
Georges Aad1, Alexander Kupco2, P. Davison3, Samuel Webb4  +2888 moreInstitutions (192)
TL;DR: Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS and is exploited to apply a local energy calibration and corrections depending on the nature of the cluster.
Abstract: The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

438 citations


Journal ArticleDOI
Mansi M. Kasliwal1, Ehud Nakar2, Leo Singer3, Leo Singer4, David L. Kaplan5, David O. Cook1, A. Van Sistine5, R. M. Lau1, Christoffer Fremling1, Ore Gottlieb2, Jacob E. Jencson1, Scott M. Adams1, U. Feindt6, Kenta Hotokezaka7, Sourav Ghosh5, Daniel A. Perley8, Po-Chieh Yu9, Tsvi Piran10, James R. Allison11, James R. Allison12, G. C. Anupama13, Arvind Balasubramanian14, Keith W. Bannister15, John Bally16, Jennifer Barnes17, Sudhanshu Barway, Eric C. Bellm18, Varun Bhalerao19, Deb Sankar Bhattacharya20, Nadejda Blagorodnova1, Joshua S. Bloom21, Joshua S. Bloom22, Patrick Brady5, Chris Cannella1, Deep Chatterjee5, S. B. Cenko3, S. B. Cenko4, B. E. Cobb23, Chris M. Copperwheat8, A. Corsi24, Kaushik De1, Dougal Dobie11, Dougal Dobie15, Dougal Dobie12, S. W. K. Emery25, Phil Evans26, Ori D. Fox27, Dale A. Frail28, C. Frohmaier29, C. Frohmaier30, Ariel Goobar6, Gregg Hallinan1, Fiona A. Harrison1, George Helou1, Tanja Hinderer31, Anna Y. Q. Ho1, Assaf Horesh10, Wing-Huen Ip7, Ryosuke Itoh32, Daniel Kasen21, Hyesook Kim, N. P. M. Kuin25, Thomas Kupfer1, Christene Lynch11, Christene Lynch12, K. K. Madsen1, Paolo A. Mazzali33, Paolo A. Mazzali8, Adam A. Miller34, Adam A. Miller35, Kunal Mooley36, Tara Murphy12, Tara Murphy11, Chow-Choong Ngeow9, David A. Nichols31, Samaya Nissanke31, Peter Nugent22, Peter Nugent21, Eran O. Ofek37, H. Qi5, Robert M. Quimby38, Robert M. Quimby39, Stephan Rosswog6, Florin Rusu40, Elaine M. Sadler11, Elaine M. Sadler12, Patricia Schmidt31, Jesper Sollerman6, Iain A. Steele8, A. R. Williamson31, Y. Xu1, Lin Yan1, Yoichi Yatsu32, C. Zhang5, Weijie Zhao40 
TL;DR: In this paper, the authors established the physical association of an electromagnetic counterpart EM170817 to gravitational waves (GW 170817) detected from merging neutron stars by synthesizing a panchromatic dataset.
Abstract: Merging neutron stars offer an exquisite laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart EM170817 to gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic dataset, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma-rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, we suggest that breakout of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/X-ray emission. We posit that all merging neutron stars may lead to a wide-angle cocoon breakout; sometimes accompanied by a successful jet and sometimes a choked jet.

403 citations


Journal ArticleDOI
TL;DR: SeeK-path as discussed by the authors is a free online service to compute and visualize the first Brillouin zone, labeled k -points and suggested band paths for any crystal structure, that made available at http://www.materialscloud.org/tools/seekpath/.

Journal ArticleDOI
TL;DR: In this paper, a single-electron spin qubit with isotopically-enriched phase coherence time (20 microseconds) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling is shown.
Abstract: Recent advances towards spin-based quantum computation have been primarily fuelled by elaborate isolation from noise sources, such as surrounding nuclear spins and spin-electric susceptibility, to extend spin coherence. In the meanwhile, addressable single-spin and spin-spin manipulations in multiple-qubit systems will necessitate sizable spin-electric coupling. Given background charge fluctuation in nanostructures, however, its compatibility with enhanced coherence should be crucially questioned. Here we realise a single-electron spin qubit with isotopically-enriched phase coherence time (20 microseconds) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge (instead of conventional magnetic) noise featured by a 1/f spectrum over seven decades of frequency. The qubit nevertheless exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average. Our work strongly suggests that designing artificial spin-electric coupling with account taken of charge noise is a promising route to large-scale spin-qubit systems having fault-tolerant controllability.

Journal ArticleDOI
14 Apr 2017
TL;DR: Six family members of the modular multilevel cascade converters, intended for grid-tied applications and medium-voltage high-power motor drives are paid much attention.
Abstract: This paper provides a chronological overview of the topology for multilevel converters, and discusses their different terminology usages and characteristics. The multilevel converters include three-level neutral-point-clamped (NPC) and neutral-point-piloted (NPP) inverters, three-level and four-level flying-capacitor (FLC) inverters, and a family of modular multilevel cascade converters. Some have already been put into commercial use, some have been on a research and development stage, and others have been on an academic research stage. This paper pays much attention to six family members of the modular multilevel cascade converters, intended for grid-tied applications and medium-voltage high-power motor drives.

Journal ArticleDOI
S. Hirose1, T. Iijima1, I. Adachi2, K. Adamczyk  +190 moreInstitutions (61)
TL;DR: The first measurement of the tau lepton polarization P-tau(D*) in the decay (B) over bar -> D* tau(-) (v) over b (tau) as well as a new measurement of the ratio of the branching fractions was reported in this paper.
Abstract: We report the first measurement of the tau lepton polarization P-tau(D*) in the decay (B) over bar -> D* tau(-) (v) over bar (tau) as well as a newmeasurement of the ratio of the branching fractions R(D*) = B((B) over bar -> D* tau(-) (v) over bar (tau)) / B((B) over bar -> D* l(-) (v) over bar (l)), where l(-) denotes an electron or a muon, and the tau is reconstructed in the modes tau(-) -> pi(-) v(tau) and tau(-) -> rho(-) v(tau). We use the full data sample of 772 x 10(6) B (B) over bar pairs recorded with the Belle detector at the (KEKB) over bar electron-positron collider. Our results, P-tau(D*) = -0.38 +/- 0.51 (stat)(-0.16)(+0.21) (syst) and R(D*) = 0.270 +/- 0.035 (stat)(- 0.025)(+0.028) (syst), are consistent with the theoretical predictions of the standard model.

Journal ArticleDOI
TL;DR: In this article, the authors summarized previous research efforts on Data Envelopment Analysis (DEA) applied to energy and environment in the past four decades, including concepts and methodologies on DEA environmental assessment.

Journal ArticleDOI
S. Wehle, C. Niebuhr, S. Yashchenko, Iki Adachi1  +239 moreInstitutions (64)
TL;DR: The result is consistent with standard model (SM) expectations, where the largest discrepancy from a SM prediction is observed in the muon modes with a local significance of 2.6σ.
Abstract: We present a measurement of angular observables and a test of lepton flavor universality in the B -> K(+)l(+)l(-) decay, where l is either e or mu. The analysis is performed on a data sample corresponding to an integrated luminosity of 711 fb(-1) containing 772 x 10(6) B (B) over bar pairs, collected at the Upsilon(4S) resonance with the Belle detector at the asymmetric-energy e(+)e(-) collider KEKB. The result is consistent with standard model (SM) expectations, where the largest discrepancy from a SM prediction is observed in the muon modes with a local significance of 2.6 sigma.

Journal ArticleDOI
TL;DR: In this paper, a combination of specific heat measurements and inelastic neutron scattering experiments is used to demonstrate the emergence of Majorana fermions in single crystals of α-RuCl3, an experimental realization of the Kitaev spin lattice.
Abstract: α-RuCl3 has recently attracted great interest as a possible experimental realization of the Kitaev model. Neutron scattering measurements of a single crystal of this material reveal signatures of Majorana excitations, consistent with Kitaev’s predictions. Geometrical constraints to the electronic degrees of freedom within condensed-matter systems often give rise to topological quantum states of matter such as fractional quantum Hall states, topological insulators, and Weyl semimetals1,2,3. In magnetism, theoretical studies predict an entangled magnetic quantum state with topological ordering and fractionalized spin excitations, the quantum spin liquid4. In particular, the so-called Kitaev spin model5, consisting of a network of spins on a honeycomb lattice, is predicted to host Majorana fermions as its excitations. By means of a combination of specific heat measurements and inelastic neutron scattering experiments, we demonstrate the emergence of Majorana fermions in single crystals of α-RuCl3, an experimental realization of the Kitaev spin lattice. The specific heat data unveils a two-stage release of magnetic entropy that is characteristic of localized and itinerant Majorana fermions. The neutron scattering results corroborate this picture by revealing quasielastic excitations at low energies around the Brillouin zone centre and an hour-glass-like magnetic continuum at high energies. Our results confirm the presence of Majorana fermions in the Kitaev quantum spin liquid and provide an opportunity to build a unified conceptual framework for investigating fractionalized excitations in condensed matter1,6,7,8.

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2944 moreInstitutions (220)
TL;DR: In this article, a search for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states was conducted using 36 : 1 fb(-1) of proton-proton collision data.
Abstract: A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states. The search uses 36 : 1 fb(-1) of proton-proton collision data, collected at root ...

Journal ArticleDOI
TL;DR: An overview of the catalytic properties of intermetallic compounds has been made to provide a comprehensive understanding regarding what intermetall compounds can do, their fundamental roles in enhanced catalysis, and their advantages over other inorganic materials.
Abstract: An overview of the catalytic properties of intermetallic compounds has been made to provide a comprehensive understanding regarding (1) what intermetallic catalysts can do, (2) their fundamental roles in enhanced catalysis, and (3) their advantages over other inorganic materials. A number of chemical transformations using intermetallic catalysts have been surveyed and classified into three major divisions—hydrogenation/dehydrogenation, oxidation, and steam reforming and various subsections. The fundamental roles of intermetallic phases obtained from this survey were categorized into four types of effects: (a) electronic, (b) geometric, (c) steric, and (d) ordering effects. The unprecedented steric effects governed by the specific surface structures of intermetallic compounds highlight the unique capabilities of intermetallic materials. On the basis of this overview, we have concluded that intermetallic compounds have the following advantages for fine catalyst design: (i) control of the electronic structur...

Journal ArticleDOI
TL;DR: A survey of highway TSE methods is conducted, and the recent usage of detailed disaggregated mobile data for the purpose of TSE is summarized, showing two possibilities in order to solve this problem: improvement of theoretical models and the use of data-driven or streaming-data-driven approaches, which recent studies have begun to consider.

Journal ArticleDOI
TL;DR: Recently, the discovery of a high critical temperature (T c ) iron-based superconductor (IBSC) was accepted with surprise in the condensed matter community and rekindled extensive study globally as mentioned in this paper.

Journal ArticleDOI
TL;DR: This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications, and reviews a particularly attractive type of soft actuators that are driven by pressurized fluids.
Abstract: The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications.

Journal ArticleDOI
TL;DR: This review of reported experimental and theoretical findings for prebiotic chemistry relevant to this topic summary indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intra-transportation of reaction products and reactants through fluid circulation.
Abstract: How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements (N and P) on the Hadean Earth, abiotic synthesis of life's building blocks (amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules (peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of (1) reductive gas phase, (2) alkaline pH, (3) freezing temperature, (4) fresh water, (5) dry/dry-wet cycle, (6) coupling with high energy reactions, (7) heating-cooling cycle in water, and (8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intra-transportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life.

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2906 moreInstitutions (214)
TL;DR: In this paper, Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016.
Abstract: Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated lumino ...

Journal ArticleDOI
TL;DR: A serendipitous finding that simple arylboronic esters are phosphorescent in the solid state at room temperature with a lifetime on the order of several seconds is reported.
Abstract: Arylboronic esters can be used as versatile reagents in organic synthesis, as represented by Suzuki–Miyaura cross-coupling. Here we report a serendipitous finding that simple arylboronic esters are phosphorescent in the solid state at room temperature with a lifetime on the order of several seconds. The phosphorescence properties of arylboronic esters are remarkable in light of the general notion that phosphorescent organic molecules require heavy atoms and/or carbonyl groups for the efficient generation of a triplet excited state. Theoretical calculations on phenylboronic acid pinacol ester indicated that this molecule undergoes an out-of-plane distortion at the (pinacol)B–Cipso moiety in the T1 excited state, which is responsible for its phosphorescence. A compound survey with 19 arylboron compounds suggested that the phosphorescence properties might be determined by solid-state molecular packing rather than by the patterns and numbers of boron substituents on the aryl units. The present finding may upd...

Proceedings ArticleDOI
21 Jul 2017
TL;DR: It is demonstrated experimentally that large-scale 3D models are not strictly necessary for accurate visual localization, and it is shown that combining image-based methods with local reconstructions results in a pose accuracy similar to the state-of-the-art structure- based methods.
Abstract: Accurate visual localization is a key technology for autonomous navigation. 3D structure-based methods employ 3D models of the scene to estimate the full 6DOF pose of a camera very accurately. However, constructing (and extending) large-scale 3D models is still a significant challenge. In contrast, 2D image retrieval-based methods only require a database of geo-tagged images, which is trivial to construct and to maintain. They are often considered inaccurate since they only approximate the positions of the cameras. Yet, the exact camera pose can theoretically be recovered when enough relevant database images are retrieved. In this paper, we demonstrate experimentally that large-scale 3D models are not strictly necessary for accurate visual localization. We create reference poses for a large and challenging urban dataset. Using these poses, we show that combining image-based methods with local reconstructions results in a pose accuracy similar to the state-of-the-art structure-based methods. Our results suggest that we might want to reconsider the current approach for accurate large-scale localization.

Journal ArticleDOI
TL;DR: The order of the experimentally obtained optical transition energies, compared with those of Si-V and Ge-V centers, was in good agreement with the theoretical calculations.
Abstract: Tin-vacancy ($\mathrm{Sn}\text{\ensuremath{-}}V$) color centers were created in diamond via ion implantation and subsequent high-temperature annealing up to $2100\text{ }\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ at 7.7 GPa. The first-principles calculation suggested that a large atom of tin can be incorporated into a diamond lattice with a split-vacancy configuration, in which a tin atom sits on an interstitial site with two neighboring vacancies. The $\mathrm{Sn}\text{\ensuremath{-}}V$ center showed a sharp zero phonon line at 619 nm at room temperature. This line split into four peaks at cryogenic temperatures, with a larger ground state splitting ($\ensuremath{\sim}850\text{ }\text{ }\mathrm{GHz}$) than that of color centers based on other group-IV elements, i.e., silicon-vacancy ($\mathrm{Si}\text{\ensuremath{-}}V$) and germanium-vacancy ($\mathrm{Ge}\text{\ensuremath{-}}V$) centers. The excited state lifetime was estimated, via Hanbury Brown--Twiss interferometry measurements on single $\mathrm{Sn}\text{\ensuremath{-}}V$ quantum emitters, to be $\ensuremath{\sim}5\text{ }\text{ }\mathrm{ns}$. The order of the experimentally obtained optical transition energies, compared with those of $\mathrm{Si}\text{\ensuremath{-}}V$ and $\mathrm{Ge}\text{\ensuremath{-}}V$ centers, was in good agreement with the theoretical calculations.

Journal ArticleDOI
TL;DR: In this article, the authors performed radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger.
Abstract: Recent detection of gravitational waves from a neutron star (NS) merger event GW170817 and identification of an electromagnetic counterpart provide a unique opportunity to study the physical processes in NS mergers. To derive properties of ejected material from the NS merger, we perform radiative transfer simulations of kilonova, optical and near-infrared emissions powered by radioactive decays of r-process nuclei synthesized in the merger. We find that the observed near-infrared emission lasting for >10 d is explained by 0.03 M⊙ of ejecta containing lanthanide elements. However, the blue optical component observed at the initial phases requires an ejecta component with a relatively high electron fraction (Ye). We show that both optical and near-infrared emissions are simultaneously reproduced by the ejecta with a medium Ye of ∼0.25. We suggest that a dominant component powering the emission is post-merger ejecta, which exhibits that the mass ejection after the first dynamical ejection is quite efficient. Our results indicate that NS mergers synthesize a wide range of r-process elements and strengthen the hypothesis that NS mergers are the origin of r-process elements in the Universe.

Journal ArticleDOI
TL;DR: It was determined that desorption is not induced by salt additives, pH changes, or photoirradiation, which partly explains the high photocatalytic performance of this material.
Abstract: Carbon nitride nanosheets (NS-C3N4) were found to undergo robust binding with a binuclear ruthenium(II) complex (RuRu′) even in basic aqueous solution. A hybrid material consisting of NS-C3N4 (further modified with nanoparticulate Ag) and RuRu′ promoted the photocatalytic reduction of CO2 to formate in aqueous media, in conjunction with high selectivity (approximately 98 %) and a good turnover number (>2000 with respect to the loaded Ru complex). These represent the highest values yet reported for a powder-based photocatalytic system during CO2 reduction under visible light in an aqueous environment. We also assessed the desorption of RuRu′ from the Ag/C3N4 surface, a factor that can contribute to a loss of activity. It was determined that desorption is not induced by salt additives, pH changes, or photoirradiation, which partly explains the high photocatalytic performance of this material.

Journal ArticleDOI
TL;DR: Ruthenium nanoparticles supported on Nb2O5 act as a highly selective and reusable heterogeneous catalyst for the low-temperature reductive amination of various carbonyl compounds that contain reduction-sensitive functional groups such as heterocycles and halogens with NH3 and H2 and prevent the formation of secondary amines and undesired hydrogenated byproducts.
Abstract: Highly selective synthesis of primary amines over heterogeneous catalysts is still a challenge for the chemical industry. Ruthenium nanoparticles supported on Nb2O5 act as a highly selective and reusable heterogeneous catalyst for the low-temperature reductive amination of various carbonyl compounds that contain reduction-sensitive functional groups such as heterocycles and halogens with NH3 and H2 and prevent the formation of secondary amines and undesired hydrogenated byproducts. The selective catalysis of these materials is likely attributable to the weak electron-donating capability of Ru particles on the Nb2O5 surface. The combination of this catalyst and homogeneous Ru systems was used to synthesize 2,5-bis(aminomethyl)furan, a monomer for aramid production, from 5-(hydroxymethyl)furfural without a complex mixture of imine byproducts.