scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
07 May 2004-Science
TL;DR: Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%.
Abstract: In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth9s core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D″ seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D″ discontinuity.

1,211 citations

Patent
09 Nov 2005
TL;DR: In this article, a novel amorphous oxide applicable to an active layer of a TFT is provided, which consists of microcrystals and can be applied to any TFT.
Abstract: A novel amorphous oxide applicable, for example, to an active layer of a TFT is provided. The amorphous oxide comprises microcrystals.

1,182 citations

Journal ArticleDOI
TL;DR: The complete nucleotide sequence of the linear chromosome of Streptomyces avermitilis is determined and it is revealed that an internal 6.5-Mb region in the S. avermitILis genome was highly conserved with respect to gene order and content, and contained all known essential genes but showed perfectly asymmetric structure at the oriC center.
Abstract: Species of the genus Streptomyces are of major pharmaceutical interest because they synthesize a variety of bioactive secondary metabolites. We have determined the complete nucleotide sequence of the linear chromosome of Streptomyces avermitilis. S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. The genome contains 9,025,608 bases (average GC content, 70.7%) and encodes at least 7,574 potential open reading frames (ORFs). Thirty-five percent of the ORFs (2,664) constitute 721 paralogous families. Thirty gene clusters related to secondary metabolite biosynthesis were identified, corresponding to 6.6% of the genome. Comparison with Streptomyces coelicolor A3(2) revealed that an internal 6.5-Mb region in the S. avermitilis genome was highly conserved with respect to gene order and content, and contained all known essential genes but showed perfectly asymmetric structure at the oriC center. In contrast, the terminal regions were not conserved and preferentially contained nonessential genes.

1,182 citations

Proceedings ArticleDOI
01 Jul 1999
TL;DR: This work presents a sketching interface for quickly and easily designing freeform models such as stuffed animals and other rotund objects and shows that a first-time user typically masters the operations within 10 minutes, and can construct interesting 3D models within minutes.
Abstract: We present a sketching interface for quickly and easily designing freeform models such as stuffed animals and other rotund objects. The user draws several 2D freeform strokes interactively on the screen and the system automatically constructs plausible 3D polygonal surfaces. Our system supports several modeling operations, including the operation to construct a 3D polygonal surface from a 2D silhouette drawn by the user: it inflates the region surrounded by the silhouette making wide areas fat, and narrow areas thin. Teddy, our prototype system, is implemented as a Java™ program, and the mesh construction is done in real-time on a standard PC. Our informal user study showed that a first-time user typically masters the operations within 10 minutes, and can construct interesting 3D models within minutes.

1,181 citations

Journal ArticleDOI
TL;DR: In this article, a working hypothesis for exploring optically transparent and electrically conducting amorphous oxides is proposed on the basis of simple considerations concerning chemical bonding, and three new materials are presented as examples.
Abstract: A working hypothesis for exploring optically transparent and electrically conducting amorphous oxides is proposed on the basis of simple considerations concerning chemical bonding. The hypothesis predicts that amorphous oxides composed of heavy metal cations with an electronic configuration of ( n − 1)d 10 ns 0 may be converted into transparent conducting amorphous oxides when doped by Li ion implantation or heating at temperatures below crystallization. Three new materials, amorphous Cd 2 GeO 4 , AgSbO 3 and Cd 2 PbO 4 , have been prepared as examples.

1,180 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,694
20193,783
20183,531