scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
TL;DR: Using a multidimensional nonlinear minimization algorithm, a set of ligand-field parameters are determined that reproduces both the NMR and the magnetic susceptibility data of the six complexes simultaneously, and the ratios of the paramagnetic shifts of the two positions were near constant in the six cases.
Abstract: The f-electronic structures of the ground states of anionic bis(phthalocyaninato)lanthanides, [Pc2Ln]- (Pc = dianion of phthalocyanine, Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, or Yb3+), are determined. Magnetic susceptibilities of the powder samples of [Pc2Ln]TBA (TBA = tetra-n-butylammonium cation) in the range 1.8−300 K showed characteristic temperature dependences which resulted from splittings of the ground-state multiplets. NMR signals for the two kinds of protons on the Pc rings at room temperature were shifted to lower frequency with respect to the diamagnetic Y complex in Ln = Tb, Dy, and Ho cases, and to higher frequency in Er, Tm, and Yb cases. The ratios of the paramagnetic shifts of the two positions were near constant in the six cases. This indicates that the shifts are predominantly caused by the magnetic dipolar term, which is determined by the anisotropy of the magnetic susceptibility of the lanthanide ion. Using a multidimensional nonlinear minimization algorithm, we determined a set of ligand...

303 citations

Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: In this paper, the authors present detailed observations of the γ-ray, X-ray and near-infrared and optical spectra of the afterglow of GRB 050904.
Abstract: The γ-ray burst GRB 050904, detected by the Swift satellite on 4 September last year, is one of the most distant objects ever observed. Its redshift of z = 6.3 equates to an explosion taking place 12.8 billion years ago, when the Universe was a mere 890 million years old. Three groups this week present detailed observations of the γ-ray, X-ray, near-infrared and optical spectra of the afterglow of GRB 050904. The results begin to paint a picture of the conditions prevailing when the parent body exploded and suggest that the γ-ray bursts that we see in the future can be used by cosmologists to probe the early Universe for evidence of star and galaxy formation, nucleosynthesis and reionization. The prompt γ-ray emission from γ-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe1,2,3,4. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman α absorption at z ≈ 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 ± 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

303 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the transformation of propane into aromatic hydrocarbons over H-ZSM-5 and Ga-exchanged Zeolite zeolites.

303 citations

Journal ArticleDOI
TL;DR: It is shown that after activation by Apg7p, Apg12p is transferred to the Cys‐133 residue of Apg10p to form an Apg 12p–Apg10p thioester, which indicates that Apg 10p is a new type of protein‐conjugating enzyme that functions in the ApG12p‐Apg5p conjugation pathway.
Abstract: Autophagy is a cellular process for bulk degradation of cytoplasmic components. The attachment of Apg12p, a modifier with no significant similarity to ubiquitin, to Apg5p is crucial for autophagy in yeast. This reaction proceeds in a ubiquitination-like manner, and requires Apg7p and Apg10p. Apg7p exhibits a considerable similarity to ubiquitin-activating enzyme (E1) and is found to activate Apg12p with ATP hydrolysis. Apg10p, on the other hand, shows no significant similarity to other proteins whose functions are known. Here, we show that after activation by Apg7p, Apg12p is transferred to the Cys-133 residue of Apg10p to form an Apg12p-Apg10p thioester. Cells expressing Apg10p(C133S) do not generate the Apg12p-Apg5p conjugate, which leads to defects in autophagy and cytoplasm-to-vacuole targeting of aminopeptidase I. These findings indicate that Apg10p is a new type of protein-conjugating enzyme that functions in the Apg12p-Apg5p conjugation pathway.

302 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,694
20193,783
20183,531