scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations

Journal ArticleDOI
TL;DR: While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model.
Abstract: Current understanding of chloride cells (CCs) is briefly reviewed with emphasis on molecular aspects of their channels, transporters and regulators. Seawater-type and freshwater-type CCs have been identified based on their shape, location and response to different ionic conditions. Among the freshwater-type CCs, subpopulations are emerging that are implicated in the uptake of Na(+), Cl(-) and Ca(2+), respectively, and can be distinguished by their shape of apical crypt and affinity for lectins. The major function of the seawater CC is transcellular secretion of Cl(-), which is accomplished by four major channels and transporters: (1). CFTR Cl(-) channel, (2). Na(+),K(+)-ATPase, (3). Na(+)/K(+)/2Cl(-) cotransporter and (4). a K(+) channel. The first three components have been cloned and characterized, but concerning the K(+) channel that is essential for the continued generation of the driving force by Na(+),K(+)-ATPase, only one candidate is identified. Although controversial, freshwater CCs seem to perform the uptake of Na(+), Cl(-) and Ca(2+) in a manner analogous to but slightly different from that seen in the absorptive epithelia of mammalian kidney and intestine since freshwater CCs face larger concentration gradients than ordinary epithelial cells. The components involved in these processes are beginning to be cloned, but their CC localization remains to be established definitively. The most important yet controversial issue is the mechanism of Na(+) uptake. Two models have been postulated: (i). the original one involves amiloride-sensitive electroneutral Na(+)/H(+) exchanger (NHE) with the driving force generated by Na(+),K(+)-ATPase and carbonic anhydrase (CA) and (ii). the current model suggests that Na(+) uptake occurs through an amiloride-sensitive epithelial sodium channel (ENaC) electrogenically coupled to H(+)-ATPase. While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid-base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na(+),K(+)-ATPase, CA-II, NHE3, Na(+)/HCO(3)(-) cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na(+) retention and acid-base regulation.

298 citations

Journal ArticleDOI
TL;DR: A series of periodic increases in intracellular free calcium concentration ([Ca2+]i) occurred upon fertilization in golden hamster eggs, and the spatial distribution of the Ca2+ transients was investigated in single zona-free, aequorin-injected eggs, inseminated by single sperm.

298 citations

Journal ArticleDOI
TL;DR: In this article, an exact integral equation for the pair distribution function is found for the Helmholtz free energy and the integral equation can be derived also by means of a variational principle from the expression for the free energy.
Abstract: An exact integral equation is found for the pair distribution function. The integral equation is of somewhat different nature from the usual ones known in the theory of classical fluids, in the point that it involves an infinite series. The Helmholtz free energy is expressed as a series expansion which may be more rapidly convergent than the usual one. It is shown that the integral equation can be derived also by means of a variational principle from the expression for the free energy. It is pointed out that the theory of classical fluids may be constructed with the knowledge of the pair distribution function alone, even if a form of the pair interaction potential is not known.

298 citations

Journal ArticleDOI
TL;DR: The current state of knowledge for the biospace in which life operates on Earth is reviewed and discussed in a planetary context, highlighting knowledge gaps and areas of opportunity.
Abstract: Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.

298 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,694
20193,783
20183,531