scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
Tomotada Akutsu1, Masaki Ando1, Masaki Ando2, Koya Arai2  +199 moreInstitutions (48)
TL;DR: KAGRA as discussed by the authors is a 2.5-generation GW detector with two 3'km baseline arms arranged in an 'L' shape, similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors.
Abstract: The recent detections of gravitational waves (GWs) reported by the LIGO and Virgo collaborations have made a significant impact on physics and astronomy. A global network of GW detectors will play a key role in uncovering the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA, a new GW detector with two 3 km baseline arms arranged in an ‘L’ shape. KAGRA’s design is similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered to be an important feature for the third-generation GW detector concept (for example, the Einstein Telescope of Europe or the Cosmic Explorer of the United States). Hence, KAGRA is often called a 2.5-generation GW detector based on laser interferometry. KAGRA’s first observation run is scheduled in late 2019, aiming to join the third observation run of the advanced LIGO–Virgo network. When operating along with the existing GW detectors, KAGRA will be helpful in locating GW sources more accurately and determining the source parameters with higher precision, providing information for follow-up observations of GW trigger candidates.

298 citations

Journal ArticleDOI
TL;DR: The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS.

298 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis and characteristics of ceramics prepared by the Pechini-type in-situ polymerizable complex (IPC) method is reviewed, and the principle and underlying chemistry of the IPC method is illustrated with a special emphasis on its intrinsic advantage over other solution-based technologies.
Abstract: This account focuses on the synthesis and characteristics of ceramics prepared by the Pechini-type in-situ polymerizable complex (IPC) method The current status of the IPC method is reviewed, and the principle and underlying chemistry of the IPC method is illustrated with a special emphasis on its intrinsic advantage over other solution-based technologies The method has the ability to prepare complex multicomponent oxides with good homogeneity through mixing at the molecular level The importance of “polymerization” itself in the IPC route is demonstrated by comparing with the non-polymerizable so-called amorphous citrate method, which affords less compositional homogeneity The use of heterometallic complexes in the IPC processing is shown to be one of the most promising techniques to synthesize ceramics with exceptionally good homogeneity It is one function of this account to describe how Raman and 13C NMR spectroscopies can be effectively used for characterizing precursors in the IPC processing Fin

297 citations

Journal ArticleDOI
TL;DR: In this paper, phase relations, mineral chemistry, and density of a natural mid-oceanic ridge basalt (MORB) composition were investigated up to 134 GPa and 2300 K by a combination of in-situ X-ray diffraction measurements and chemical analyses using transmission electron microscope (TEM).

297 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,695
20193,783
20183,531