scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
25 Aug 2011-Nature
TL;DR: Observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451 conclude that they have captured the onset of relativistic jet activity from a supermassive black hole.
Abstract: Two groups report observations of the X-ray source Swift J164449.3+573451, which was discovered when it triggered the Swift Burst Alert Telescope on 28 March 2011. Burrows et al. report that the source has increased in brightness in the X-ray band more than 10,000-fold since 1990, and by more than 100-fold since early 2010. They conclude that we are observing the onset of relativistic jet activity from a supermassive black hole. Zauderer et al. arrive at a similar conclusion based on their observation of a radio transient associated with the source, and extensive monitoring at centimetre to millimetre wavelengths during the first month of its evolution. They estimate the mass of the black hole at around 106 solar masses. Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close1,2, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole3,4,5,6,7. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies8,9,10,11,12,13,14, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper15 comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

588 citations

Journal ArticleDOI
TL;DR: In this paper, a weak convergence theorem for a pair of a nonexpansive mapping and a strictly pseudocontractive mapping was obtained for the problem of finding a common element of the set of fixed points of a nonsmooth mapping and the solutions of a variational inequality problem for a strongly monotone mapping.
Abstract: In this paper, we introduce an iteration process of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for an inverse strongly-monotone mapping, and then obtain a weak convergence theorem. Using this result, we obtain a weak convergence theorem for a pair of a nonexpansive mapping and a strictly pseudocontractive mapping. Further, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse strongly-monotone mapping.

588 citations

Journal ArticleDOI
TL;DR: Inaccessibility of biotinylated concanavalin A to the native elementary unit and partial dissociation of the elementary unit after incubation with excess N-glycosidase F or endoglycosidases H suggest that a single molecule of P25 is located internally and plays an important role in maintaining integrity of the complex.

588 citations

Journal ArticleDOI
TL;DR: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion as discussed by the authors.
Abstract: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion The solubility behavior of TM ions was discussed from the viewpoints of the ionic radius and valence state The magneto-optical responses coincident with absorption spectra were observed for Mn- and Co-doped samples Cathodoluminescence spectra were studied for Cr-, Mn-, Fe-, and Co-doped samples, among which Cr-doped ZnO showed two sharp peaks at 297 eV and 371 eV, respectively, at the expense of the exciton emission peak of pure ZnO at 325 eV Different magnetoresistance behavior was observed for the samples codoped with n-type carriers Ferromagnetism was not observed for Cr- to Cu-doped samples down to 3 K

587 citations

Journal ArticleDOI
A. A. Abdo1, Markus Ackermann2, Marco Ajello2, Katsuaki Asano3  +233 moreInstitutions (43)
19 Nov 2009-Nature
TL;DR: The detection of emission up to ∼31 GeV from the distant and short GRB, and no evidence for the violation of Lorentz invariance is found, which disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
Abstract: A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

586 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,695
20193,783
20183,531