scispace - formally typeset
Search or ask a question
Institution

Tokyo Institute of Technology

EducationTokyo, Tôkyô, Japan
About: Tokyo Institute of Technology is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 46775 authors who have published 101656 publications receiving 2357893 citations. The organization is also known as: Tokyo Tech & Tokodai.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the integration of a micrometre-sized magnet with a semiconductor device has enabled the individual manipulation of two single electron spins, which may provide a scalable route for quantum computing with electron spins confined in quantum dots.
Abstract: The integration of a micrometre-sized magnet with a semiconductor device has enabled the individual manipulation of two single electron spins. This approach may provide a scalable route for quantum computing with electron spins confined in quantum dots.

522 citations

Journal ArticleDOI
TL;DR: A heterogeneous photocatalyst system that consists of a ruthenium complex and carbon nitride (C3N4), which act as the catalytic and light-harvesting units, respectively, was developed for the reduction of CO2 into formic acid with good results under visible-light irradiation.
Abstract: A heterogeneous photocatalyst system that consists of a ruthenium complex and carbon nitride (C3N4), which act as the catalytic and light-harvesting units, respectively, was developed for the reduction of CO2 into formic acid. Promoting the injection of electrons from C3N4 into the ruthenium unit as well as strengthening the electronic interactions between the two units enhanced its activity. The use of a suitable solvent further improved the performance, resulting in a turnover number of greater than 1000 and an apparent quantum yield of 5.7 % at 400 nm. These are the best values that have been reported for heterogeneous photocatalysts for CO2 reduction under visible-light irradiation to date.

520 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the current understanding on (i) polymorphic crystallization and phase transition of biodegradable polyesters, (ii) isomorphic crystallization of poly(3-hydroxybutyrate) and (iii) poly(butylene adipate) random copolyesters, where the effects of comonomer composition and crystallization conditions are highlighted.

520 citations

Journal ArticleDOI
04 Jun 2009-Nature
TL;DR: It is shown that two cardiac transcription factors, Gata4 and Tbx5, and a cardiac-specific subunit of BAF chromatin-remodelling complexes, Baf60c, can direct ectopic differentiation of mouse mesoderm into beating cardiomyocytes, including the normally non-cardiogenic posterior Mesoderm and the extraembryonic mesod Germ of the amnion.
Abstract: Heart disease is the leading cause of mortality and morbidity in the western world. The heart has little regenerative capacity after damage, leading to much interest in understanding the factors required to produce new cardiac myocytes. Despite a robust understanding of the molecular networks regulating cardiac differentiation, no single transcription factor or combination of factors has been shown to activate the cardiac gene program de novo in mammalian cells or tissues. Here we define the minimal requirements for transdifferentiation of mouse mesoderm to cardiac myocytes. We show that two cardiac transcription factors, Gata4 and Tbx5, and a cardiac-specific subunit of BAF chromatin-remodelling complexes, Baf60c (also called Smarcd3), can direct ectopic differentiation of mouse mesoderm into beating cardiomyocytes, including the normally non-cardiogenic posterior mesoderm and the extraembryonic mesoderm of the amnion. Gata4 with Baf60c initiated ectopic cardiac gene expression. Addition of Tbx5 allowed differentiation into contracting cardiomyocytes and repression of non-cardiac mesodermal genes. Baf60c was essential for the ectopic cardiogenic activity of Gata4 and Tbx5, partly by permitting binding of Gata4 to cardiac genes, indicating a novel instructive role for BAF complexes in tissue-specific regulation. The combined function of these factors establishes a robust mechanism for controlling cellular differentiation, and may allow reprogramming of new cardiomyocytes for regenerative purposes.

517 citations

Journal ArticleDOI
S. Fukuda1, Y. Fukuda1, M. Ishitsuka1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, K. Kaneyuki1, K. Kobayashi1, Yusuke Koshio1, M. Miura1, S. Moriyama1, Masayuki Nakahata1, S. Nakayama1, A. Okada1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, H. Takeuchi1, Y. Takeuchi1, T. Toshito1, Y. Totsuka1, Shoichi Yamada1, Shantanu Desai2, M. Earl2, E. Kearns2, M. D. Messier2, Kate Scholberg2, Kate Scholberg3, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber4, T. Barszczak5, David William Casper5, W. Gajewski5, W. R. Kropp5, S. Mine5, D. W. Liu5, L. R. Price5, M. B. Smy5, Henry W. Sobel5, M. R. Vagins5, K. S. Ganezer6, W. E. Keig6, R. W. Ellsworth7, S. Tasaka8, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, Y. Hayato, T. Ishii, Takashi Kobayashi, Koji Nakamura, Y. Obayashi, Y. Oyama, A. Sakai, Makoto Sakuda, M. Kohama9, Atsumu Suzuki9, T. Inagaki10, Tsuyoshi Nakaya10, K. Nishikawa10, Todd Haines11, Todd Haines5, E. Blaufuss12, E. Blaufuss13, S. Dazeley12, K. B. Lee14, K. B. Lee12, R. Svoboda12, J. A. Goodman13, G. Guillian13, G. W. Sullivan13, D. Turcan13, Alec Habig15, J. Hill16, C. K. Jung16, K. Martens16, K. Martens17, Magdalena Malek16, C. Mauger16, C. McGrew16, E. Sharkey16, B. Viren16, C. Yanagisawa16, C. Mitsuda18, K. Miyano18, C. Saji18, T. Shibata18, Y. Kajiyama19, Y. Nagashima19, K. Nitta19, M. Takita19, Minoru Yoshida19, Heekyong Kim20, Soo-Bong Kim20, J. Yoo20, H. Okazawa, T. Ishizuka21, M. Etoh22, Y. Gando22, Takehisa Hasegawa22, Kunio Inoue22, K. Ishihara22, Tomoyuki Maruyama22, J. Shirai22, A. Suzuki22, Masatoshi Koshiba1, Y. Hatakeyama23, Y. Ichikawa23, M. Koike23, Kyoshi Nishijima23, H. Fujiyasu24, Hirokazu Ishino24, M. Morii24, Y. Watanabe24, U. Golebiewska25, D. Kielczewska25, D. Kielczewska5, S. C. Boyd26, A. L. Stachyra26, R. J. Wilkes26, K. K. Young26 
TL;DR: The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way, and two allowed regions at large mixing are found.
Abstract: We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found

515 citations


Authors

Showing all 46967 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Yury Gogotsi171956144520
Masayuki Yamamoto1711576123028
H. Eugene Stanley1541190122321
Takashi Taniguchi1522141110658
Shu-Hong Yu14479970853
Kazunori Kataoka13890870412
Osamu Jinnouchi13588586104
Hector F. DeLuca133130369395
Shlomo Havlin131101383347
Hiroyuki Iwasaki131100982739
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Andreas Strasser12850966903
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyoto University
217.2K papers, 6.5M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022358
20213,457
20203,694
20193,783
20183,531