scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the apoplastic ascorbate, which is generated through the reduction of DHA by cytDHAR, is important for ozone tolerance.
Abstract: ;Dehydroascorbate reductase (DHAR) is a key component of the ascorbate recycling system. Three functional DHAR genes are encoded in the Arabidopsis genome. Ozone exposure increased the expression of the cytosolic DHAR (cytDHAR) gene alone. We characterized an Arabidopsis mutant with a deficient cytDHAR. The mutant completely lacked cytDHAR activity and was highly ozone sensitive. The amounts of total ascorbate and glutathione were similar in both lines, but the amount of apoplastic ascorbate in the mutant was 61.5% lower. These results indicate that the apoplastic ascorbate, which is generated through the reduction of DHA by cytDHAR, is important for ozone tolerance.

125 citations

Journal ArticleDOI
TL;DR: The model is a model of thinking through decoherence of the initially pure mental state, induced by the interaction with memory and the external mental environment, and the dynamics of quantum entropy of Alice's mental state in the process of decision making are studied.

125 citations

Journal ArticleDOI
20 Apr 2006-Oncogene
TL;DR: The results suggest that the Ets transcription factor PU.1 may downregulate its target genes through an epigenetic modification such as DNA methylation.
Abstract: The Ets transcription factor PU.1 is a hematopoietic master regulator essential for the development of myeloid and B-cell lineages. As we previously reported, PU.1 sometimes represses transcription on forming a complex with mSin3A-histone deacetyl transferase-MeCP2. Here, we show an interaction between PU.1 and DNA methyltransferases, DNA methyltransferase (Dnmt)3a and Dnmt3b (Dnmt3s). Glutathione-S-transferase pulldown assay revealed that PU.1 directly interacted with the ATRX domain of Dnmt3s through the ETS domain. Dnmt3s repressed the transcriptional activity of PU.1 on a reporter construct with trimerized PU.1-binding sites. The repression was recovered by addition of 5-aza-deoxycitidine, a DNA methyltransferase inhibitor, but not trichostatin A, a histone deacetylase inhibitor. Bisulfite sequence analysis revealed that several CpG sites in the promoter region neighboring the PU.1-binding sites were methylated when Dnmt3s were coexpressed with PU.1. We also showed that the CpG sites in the p16(INK4A) promoter were methylated by overexpression of PU.1 in NIH3T3 cells, accompanied by a downregulation of p16(INK4A) gene expression. These results suggest that PU.1 may downregulate its target genes through an epigenetic modification such as DNA methylation.

125 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: From the dynamic surface tension measurements, it is found that the shorter hydrocarbon chain length of 1,2-bis(N-beta-carboxypropanoyl-N-alkylamino)ethane, the faster the rate of decrease of surface tension.
Abstract: Novel anionic gemini surfactants, 1,2-bis(N-beta-carboxypropanoyl-N-alkylamino)ethane (2CnenAm; n is hydrocarbon chain length of 6, 8, 10, 12, or 14), with two hydrocarbon chains, two carboxylate groups, and two amide groups, were synthesized by three-step reactions. Their solution properties were characterized by equilibrium and dynamic surface tension, steady-state fluorescence spectroscopy of pyrene, and dynamic light-scattering techniques. The surface tension measurements of 2CnenAm give low critical micelle concentrations (cmc), great efficiency in lowering the surface tension, and strong adsorption at air/water interface. Gemini surfactants behave normally with the logarithm of cmc decrease linearly with the chain length. In addition, adsorption and micellization behavior of 2CnenAm was estimated by parameter of pC20, cmc/C20, and standard free energy (DeltaG(0)mic and DeltaG(0)ads); they are significantly influenced by hydrocarbon chain length, and the adsorption is promoted more than the micellization as chain length becomes longer. The results of dynamic light-scattering and fluorescence quenching indicate that small micelles of 2CnenAm are observed at the concentrations above the cmc, and further large particles are also seen. Further, from the dynamic surface tension measurements, it is found that the shorter hydrocarbon chain length of 2CnenAm, the faster the rate of decrease of surface tension.

125 citations

Journal ArticleDOI
TL;DR: Synthetic glycan tailoring provides a versatile approach to the preparation of newly substituted glycans with favorable ligand properties for medical applications.
Abstract: We have investigated the consequences of introducing a bisecting GlcNAc moiety into biantennary N-glycans. Computational analysis of glycan conformation with prolonged simulation periods in vacuo and in a solvent box revealed two main effects: backfolding of the α1–6 arm and stacking of the bisecting GlcNAc and the neighboring Man/GlcNAc residues of both antennae. Chemoenzymatic synthesis produced the bisecting biantennary decasaccharide N-glycan and its α2–3(6)-sialylated variants. They were conjugated to BSA to probe the ligand properties of N-glycans with bisecting GlcNAc. To assess affinity alterations in glycan binding to receptors, testing was performed with purified lectins, cultured cells, tissue sections and animals. The panel of lectins, including an adhesion/growth-regulatory galectin, revealed up to a sixfold difference in affinity constants for these neoglycoproteins relative to data on the unsubstituted glycans reported previously [Andre, S., Unverzagt, C., Kojima, S., Dong, X., Fink, C., Kayser, K. & Gabius, H.-J. (1997) Bioconjugate Chem. 8, 845–855]. The enhanced affinity for galectin-1 is in accord with the increased percentage of cell positivity in cytofluorimetric and histochemical analysis of carbohydrate-dependent binding of labeled neoglycoproteins to cultured tumor cells and routinely processed lung cancer sections. Intravenous injection of iodinated neoglycoproteins carrying galactose-terminated N-glycans into mice revealed the highest uptake in liver and spleen for the bisecting compound compared with the unsubstituted or core-fucosylated N-glycans. Thus, this substitution modulates ligand properties in interactions with lectins, a key finding of this report. Synthetic glycan tailoring provides a versatile approach to the preparation of newly substituted glycans with favorable ligand properties for medical applications.

125 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429