scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
01 May 2004-Immunity
TL;DR: It is demonstrated that Notch/RBP-J signaling regulates γδ T cell generation and migration, αβ T cell maturation, terminal differentiation of CD4 + T cells into Th1/Th2 cells, and activation of T cells.

305 citations

Journal ArticleDOI
TL;DR: A remarkable change from quantum to classical features for the thermal transport through defective carbon nanotubes with increasing temperature is found.
Abstract: We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales defects, since the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, thermal conductance is critically affected by defect scattering since incident phonons are scattered by localized phonons around the defects. We find a remarkable change from quantum to classical features for the thermal transport through defective carbon nanotubes with increasing temperature.

303 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity.
Abstract: Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g-1 based on solid-state redox reaction of oxide ions.

303 citations

Journal ArticleDOI
TL;DR: This work presents their work on the electrochemical reduction of CO2 in seawater using a boron-doped diamond (BDD) electrode under ambient conditions to produce formaldehyde, which overcomes the usual limitation of the low yield of higher-order products, and also reduces the generation of H2.
Abstract: The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron-doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher-order products, and also reduces the generation of H2 . In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74%) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp(3)-bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost-effective conversion of CO2.

301 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation of turbulent heat transfer in a channel flow has been carried out in order to investigate the characteristics of surface heat-flux fluctuations, and the effect of large-scale structures extends even to the surface heatfluctuations, and increases with increasing Reynolds number.

301 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429