scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used 3,3-diethoxypropoxide as an initiator for block copolymers with an acetal moiety at the PEG chain end, which was later converted into an aldehyde group.
Abstract: Formation of amphiphilic poly(ethylene glycol)-b-polylactide (PEG/PLA) block copolymers was accomplished by using potassium alkoxides to initiate the anionic polymerization of ethylene oxide, with the living chain end initiating the polymerization of lactide. By using potassium 3,3-diethoxypropoxide as an initiator, block copolymers with an acetal moiety at the PEG chain end, which was later converted into an aldehyde group, were obtained. The amphiphilic block copolymers formed micelles in aqueous milieu. The conversion of acetal end groups to aldehyde groups was carried out by an acid treatment using 0.01 mol L-1 hydrochloric acid. The extent of the conversion attained was >90%, without any side reaction such as aldol condensation. The micellar structure may play an important role in preventing a possible aldol condensation between the neighboring two aldehyde groups at the PEG chain end. From dynamic light scattering measurements, no angular dependence of the scaled characteristic line width was observ...

231 citations

Journal ArticleDOI
TL;DR: The results suggested the capacity for selective adsorption of MIPi to be not only based on the isoelectric point (pI) and protein molecular weight, but also the characteristics of protein recognition cavities imprinted on base silica.

231 citations

Journal ArticleDOI
TL;DR: It is identified that basophils and ILC2s significantly accumulate in inflamed human and murine skin and form clusters not observed in control skin, and a previously unrecognized role for basophil-derived IL-4 in promoting I LC2 responses during cutaneous inflammation is revealed.
Abstract: Type 2 inflammation underlies allergic diseases such as atopic dermatitis, which is characterized by the accumulation of basophils and group 2 innate lymphoid cells (ILC2s) in inflamed skin lesions Although murine studies have demonstrated that cutaneous basophil and ILC2 responses are dependent on thymic stromal lymphopoietin, whether these cell populations interact to regulate the development of cutaneous type 2 inflammation is poorly defined In this study, we identify that basophils and ILC2s significantly accumulate in inflamed human and murine skin and form clusters not observed in control skin We demonstrate that murine basophil responses precede ILC2 responses and that basophils are the dominant IL-4-enhanced GFP-expressing cell type in inflamed skin Furthermore, basophils and IL-4 were necessary for the optimal accumulation of ILC2s and induction of atopic dermatitis-like disease We show that ILC2s express IL-4Rα and proliferate in an IL-4-dependent manner Additionally, basophil-derived IL-4 was required for cutaneous ILC2 responses in vivo and directly regulated ILC2 proliferation ex vivo Collectively, these data reveal a previously unrecognized role for basophil-derived IL-4 in promoting ILC2 responses during cutaneous inflammation

230 citations

Journal ArticleDOI
TL;DR: Diffuse reflection and photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side, as the ratio of CuInS(2) to ZnS increased in theSolid solutions, and the photocatalytic H( 2) evolution depended on the composition as well as the photophysical properties.
Abstract: (CuIn)xZn2(1-x)S2 solid solutions between a ZnS photocatalyst with a wide band gap and CuInS2 with a narrow band gap showed photocatalytic activities for H2 evolution from aqueous solutions containing sacrificial reagents SO32- and S2- under visible-light irradiation (λ ≥ 420 nm). Pt (0.5 wt %)-loaded (CuIn)0.09Zn1.82S2 with a 2.3-eV band gap showed the highest activity for H2 evolution, and the apparent quantum yield at 420 nm amounted to 12.5%. H2 evolved at a rate of 1.5 L h-1 m-2 under irradiation with a solar simulator (AM 1.5). Diffuse reflection and photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side, as the ratio of CuInS2 to ZnS increased in the solid solutions. The photocatalytic H2 evolution depended on the composition as well as the photophysical properties. DFT calculations suggested that the visible-light response should be derived from the contribution of Cu 3d and S 3p orbitals to the valence band and that of In 5s5p and Zn 4s4p orbitals to the ...

229 citations

Proceedings ArticleDOI
25 Oct 2012
TL;DR: This paper investigates the system-level throughput of non-orthogonal access with a successive interference canceller (SIC) in the cellular downlink assuming proportional fair (PF)-based radio resource (bandwidth and transmission power) allocation and proposes and compares three power allocation strategies among users.
Abstract: This paper investigates the system-level throughput of non-orthogonal access with a successive interference canceller (SIC) in the cellular downlink assuming proportional fair (PF)-based radio resource (bandwidth and transmission power) allocation. The purpose of this study is to examine the possibility of applying non-orthogonal access with a SIC to the systems beyond the 4G (thus IMT-Advanced) cellular system. Both the total and cell-edge average user throughput are important in a real system. PF-based scheduling is known to achieve a good tradeoff by maximizing the product of the average user throughput among users within a cell. In non-orthogonal access with a SIC, the scheduler allocates the same frequency to multiple users, which necessitates multiuser scheduling. To achieve a better tradeoff between the total and cell-edge average user throughput, we propose and compare three power allocation strategies among users, which are jointly implemented with multiuser scheduling. Extensive simulation results show that non-orthogonal access with a SIC with a moderate number of non-orthogonally multiplexed users significantly enhances the system-level throughput performance compared to orthogonal access, which is widely used in 3.9 and 4G mobile communication systems.

229 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429