scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
01 Jul 2019
TL;DR: The Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled with increased and widened societal needs, as well as individual and collective expectations that HCI, as a discipline, is called upon to address are investigated.
Abstract: This article aims to investigate the Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled w...

214 citations

Journal ArticleDOI
TL;DR: It is suggested that ROS production by RbohH and R bohJ is essential for proper pollen tube tip growth, and furthermore, that Ca2+-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.
Abstract: In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca2+ binding EF-hand motifs, possessed Ca2+-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca2+-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca2+-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca2+. Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca2+-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.

214 citations

Journal ArticleDOI
TL;DR: The results revealed that the effects of substitution of each element can be superimposed on the cluster by combining multiple elemental substitutions at different sites, which is expected to lead to clear design guidelines for developing new functional nanomaterials.
Abstract: ConspectusMetal alloys exhibit functionalities unlike those of single metals. Such alloying has drawn considerable research interest, particularly for nanoscale particles (metal clusters/nanoparticles), from the viewpoint of creating new functional nanomaterials. In gas phase cluster research, generated alloy clusters can be spatially separated with atomic precision in vacuum. Thus, the influences of increases or decreases in each element on the overall electronic structure of the cluster can be elucidated. However, to further understand the related mixing and synergistic effects, alloy clusters need to be produced on a large scale and characterized by various techniques. Because alloy clusters protected by thiolate (SR) can be synthesized by chemical methods and are stable in both solution and the solid state, these clusters are ideal study materials to better understand the mixing and synergistic effects. Moreover, the alloy clusters thus created have potential applications as functional materials. Ther...

214 citations

Journal ArticleDOI
TL;DR: It is shown that during Th1 differentiation a reduction in the association of Janus kinase 1 with the IL-4 receptor (IL-4R) correlated with the appearance of the suppressor of cytokine signaling-5 (SOCS5), which resulted in the inhibition of IL- 4-mediated signal transducer and activator of transcription-6 activation.
Abstract: The development of helper T (Th) cell subsets, which secrete distinct cytokines, plays an important role in determining the type of immune response. The IL-4-mediated Janus kinase–signal transducer and activator of transcription signaling pathway is crucial for mediating Th2 cell development. Notably, this pathway is selectively impaired in Th1 cells, although the molecular basis of this impairment remains unclear. We show here that during Th1 differentiation a reduction in the association of Janus kinase 1 with the IL-4 receptor (IL-4R) correlated with the appearance of the suppressor of cytokine signaling-5 (SOCS5). SOCS5 protein was preferentially expressed in committed Th1 cells and interacted with the cytoplasmic region of the IL-4Rα chain irrespective of receptor tyrosine phosphorylation. This unconventional interaction of SOCS5 protein with the IL-4R resulted in the inhibition of IL-4-mediated signal transducer and activator of transcription-6 activation. T cells from transgenic mice constitutively expressing SOCS5 exhibited a significant reduction of IL-4-mediated Th2 development. Therefore, the induced SOCS5 protein in Th1 differentiation environment may play an important role by regulating Th1 and Th2 balance.

213 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429