scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: The potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy are revealed and restored hair cycles and piloerection are shown.
Abstract: Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey and obtained the first cosmological study at such high redshifts.
Abstract: We measure the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers the redshift ranges of $1.19<$z$<1.55$, is the first cosmological study at such high redshifts. We detect clear anisotropy due to redshift-space distortions (RSD) both in the correlation function as a function of separations parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at $z<1$. Adopting a LCDM cosmology with the fixed expansion history and no velocity dispersion $\sigma_{\rm v}=0$, and using the RSD measurements on scales above 8Mpc/h, we obtain the first constraint on the growth rate at the redshift, $f(z)\sigma_8(z)=0.482\pm 0.116$ at $z\sim 1.4$ after marginalizing over the galaxy bias parameter $b(z)\sigma_8(z)$. This corresponds to $4.2\sigma$ detection of RSD. Our constraint is consistent with the prediction of general relativity $f\sigma_8\sim 0.392$ within the $1-\sigma$ confidence level. When we allow $\sigma_{\rm v}$ to vary and marginalize it over, the growth rate constraint becomes $f\sigma_8=0.494^{+0.126}_{-0.120}$. We also demonstrate that by combining with the low-z constraints on $f\sigma_8$, high-z galaxy surveys like the FastSound can be useful to distinguish modified gravity models without relying on CMB anisotropy experiments.

205 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulation of a fully developed turbulent channel flow was carried out at three Reynolds numbers, 180, 395, and 640, based on the friction velocity and the channel half width, in order to investigate very large-scale structures and their effects on the wall shear-stress fluctuations.
Abstract: Direct numerical simulation of a fully developed turbulent channel flow has been carried out at three Reynolds numbers, 180, 395, and 640, based on the friction velocity and the channel half width, in order to investigate very large-scale structures and their effects on the wall shear-stress fluctuations

203 citations

Journal ArticleDOI
TL;DR: Reversible and topotactic potassium intercalation of P2- and P3-KxCoO2 electrodes is studied in non-aqueous K cells in the voltage range 2.0-3.9 V accompanied by reversible phase transitions including potassium/vacancy orderings.

203 citations

Journal ArticleDOI
15 May 2009
TL;DR: In this article, Li and NaNi0.5Mn 0.5O2 and NaCrO2 electrodes were investigated in 1 mol dm-3 NaClO4 propylene carbonate at room temperature.
Abstract: Electrochemical activities of NaNi0.5Mn0.5O2 and NaCrO2, having the analogous layered structure to LiCoO2, were investigated in 1 mol dm-3 NaClO4 propylene carbonate at room temperature. Almost all sodium ions were extracted from the NaNi0.5Mn0.5O2 and NaCrO2 electrodes by galvanostatic oxidation to 4.5 V accompanied with several phase transitions. Layered NaNi0.5Mn0.5O2 electrode showed a highly reversible capacity of 185 mAh g-1 as positive electrode in Na cell in the potential region between 2.5 and 4.5 V versus Na. A NaCrO2 electrode was hardly electroactive after oxidation up to 4.5 V. When galvanostatic cycling was carried in the limited potential domain between 2 and 3.5 V, both electrodes showed discharge capacities of 100 - 120 mAh g-1 with satisfactory capacity retention. Layered LiCrO2 (R-3m) and NaCrO2 (R-3m) possess the quite similar crystal structures and the same transition metal, nevertheless they were inactive and active in Li and Na cells, respectively.

203 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429