scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the tradeoff between CO 2 emissions and total cost of technologies is analyzed so that the most cost-effective technology can be determined for different CO2 emissions constraints. And the position of supercritical water gasification in various technologies of energy conversion is examined by modeling an overall energy system.
Abstract: Efficiency and CO 2 emissions between various methods of biomass energy conversion are compared from the viewpoint of life-cycle evaluation. As for electricity generation, efficient processes are thermal gasification combined cycle, supercritical water gasification combined cycle, and direct combustion in order of efficiency for low moisture content biomass. Supercritical water gasification combined cycle is the most efficient for high moisture content biomass. Battery electric vehicle, gasoline hybrid electric vehicle, and gas full cell vehicle (FCV) show high efficiency in automobiles. Biomass FCV shows high efficiency in the vehicles utilizing biomass. Biogas combustion is the most efficient for heat utilization. Then, the position of supercritical water gasification in various technologies of energy conversion is examined by modeling an overall energy system. The tradeoff between CO 2 emissions and total cost of technologies is analyzed so that the most cost-effective technology can be determined for different CO 2 emissions constraints. Computed results show that biomass is mainly consumed for electricity and heat generation so as to utilize finite biomass resources efficiently. Transportation fuels are generally made from fossil fuels. Cost-effective processes for CO 2 reduction are thermal gasification and reforming when the present efficiency and prices are assumed. Supercritical water gasification is also one of the optimal processes when the relative cost to fuel cell decreases. Improving heat exchange efficiency also contributes toward enhancing the position of supercritical water gasification in biomass technologies.

152 citations

Journal ArticleDOI
TL;DR: In this paper, the alternating copolymerization of CO2 and cyclohexene oxide (CHO) with an aluminum Schiff base complex in conjunction with an appropriate additive as a novel initiator is demonstrated.
Abstract: The alternating copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO) with an aluminum Schiff base complex in conjunction with an appropriate additive as a novel initiator is demonstrated. A typical example is the copolymerization of CO2 and CHO with the (Salophen)AlMe (1a)–tetraethylammonium acetate (Et4NOAc) system. When a mixture of the 1a–Et4NOAc system and CHO was pressurized by CO2 (50 atm) at 80 °C in CH2Cl2, the copolymerization of CO2 and CHO took place smoothly and produced a high polymer yield in 24 h. From the IR and NMR spectra, the product was characterized to be a copolymer of CO2 and CHO with an almost perfect alternating structure. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis indicated that an unfavorable reaction between Et4NOAc and CH2Cl2 and a possible chain-transfer reaction with concomitant water occurred, and this resulted in the bimodal distribution of the obtained copolymer. With carefully predried reagents and apparatus, the alternating copolymerization in toluene gave a copolymer with a unimodal and narrower molecular weight distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4172–4186, 2005

152 citations

Journal ArticleDOI
TL;DR: The present vinylogous Mukaiyama aldol reaction provides a unique and effective means of controlling remote asymmetric induction and can provide a one-step construction of delta-hydroxy- alpha,gamma-dimethyl-alpha,beta-unsaturated carbonyl unit that is seen in many natural polyketide products.
Abstract: A highly regio- and diastereoselective TiCl4-mediated vinylogous Mukaiyama aldol reaction using the chiral vinylketene silyl N,O-acetal has been developed. The present vinylogous Mukaiyama aldol reaction provides a unique and effective means of controlling remote asymmetric induction. The methyl group at the alpha-position is important in achieving a high level of stereoselectivity. From a synthetic point of view, this methodology can provide a one-step construction of delta-hydroxy-alpha,gamma-dimethyl-alpha,beta-unsaturated carbonyl unit that is seen in many natural polyketide products.

152 citations

Journal ArticleDOI
TL;DR: Two stable thiolate-protected gold clusters (Au-SR), Au130 and Au187 clusters, were synthesized to obtain a better understanding of the size dependence of the origin of the stability of Au-SR clusters.
Abstract: Two stable thiolate-protected gold clusters (Au-SR), Au130 and Au187 clusters, were synthesized to obtain a better understanding of the size dependence of the origin of the stability of Au-SR clusters. These clusters were synthesized by employing different preparation conditions from those used to synthesize previously reported magic gold clusters; in particular, a lower [RSH] to [AuCl4(-)] molar ratio ([AuCl4(-)]/[RSH] = 1:1) was used than that used to prepare Au25(SR)18, Au38(SR)24, Au68(SR)34, Au102(SR)44, and Au144(SR)60 (id. = 1:4-12). The two clusters thus synthesized were separated from the mixture by high-performance liquid chromatography with reverse-phase columns. Mass spectrometry of the products revealed the presence of two clusters with chemical compositions of Au130(SC12H25)50 and Au187(SC12H25)68. The origin of the stability of these two clusters and the size dependence of the origin of the stability of thiolate-protected gold clusters were discussed in terms of the total number of valence electrons.

151 citations

Journal Article
TL;DR: A novel gene preferentially expressed in bursal B cells, designated BASH, is suggested to be involved in BCR-mediated signal transduction and could play a critical role in B cell development in the bursa.
Abstract: The bursa of Fabricius is a gut-associated lymphoid organ that is essential for the generation of a diversified B cell repertoire in the chicken. We describe here a novel gene preferentially expressed in bursal B cells. The gene encodes an 85-kDa protein, designated BASH (B cell adaptor containing SH2 domain), that contains N-terminal acidic domains with SH2 domain-binding phosphotyrosine-based motifs, a proline-rich domain, and a C-terminal SH2 domain. BASH shows a substantial sequence similarity to SLP-76, an adaptor protein functioning in TCR-signal transduction. BASH becomes tyrosine-phosphorylated with the B cell Ag receptor (BCR) cross-link or by coexpression with Syk and Lyn and associates with signaling molecules including Syk and a putative chicken Shc homologue. Overexpression of BASH results in suppression of the NF-AT activation induced by BCR-cross-linking. These findings suggest that BASH is involved in BCR-mediated signal transduction and could play a critical role in B cell development in the bursa.

151 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429