scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Thin film & Enantioselective synthesis. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: A composite-type immunostimulatory DNA hydrogel consisting of a hexapod-like structured DNA (hexapodna) with CpG sequences and gold nanoparticles with significantly retarded the tumor growth and extended the survival of the tumor-bearing mice.

149 citations

Journal ArticleDOI
TL;DR: It was found that DEPs, TiO(2) and CB nanoparticles were taken up by Leydig cells, and affected the viability, proliferation and gene expression, and the patterns were unique for each nanoparticle.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the chemical composition of marine aerosol samples collected at low latitudes to midlatitudes in the Northern Hemisphere during a round-the-world cruise was studied using gas chromatography/mass spectrometry.
Abstract: [1] Organic molecular compositions of marine aerosol samples, collected at low latitudes to midlatitudes in the Northern Hemisphere during a round-the-world cruise, were studied using gas chromatography/mass spectrometry. More than 140 organic species were detected in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 0.94 to 111 ng m−3 (average of 34 ng m−3). Biogenic secondary organic aerosol (SOA) tracers from the oxidation of isoprene (e.g., 2-methyltetrols), α/β-pinene (e.g., pinonic and pinic acids), and β-caryophyllene (β-caryophyllinic acid) were detected in all the samples. Their total concentrations ranged from 0.19 to 27 ng m−3, which account for 0.48–29% of the total identified organics and 0.05–1.5% of organic carbon in the marine aerosols. The spatial distributions of biogenic SOA tracers exhibited higher loadings over the coastal/tropical regions than the open oceans. In marine aerosols collected over the North Pacific and North Atlantic, the contributions of marine natural emissions (22–33%) were higher than those in the coastal regions (4–14%). Over the tropical regions, atmospheric oxidation products can account for 47–59% of the total organics, with biomass burning emissions of only 1–2%. However, over the western North Pacific, fossil fuel combustion (26%), atmospheric oxidation products (25%), and biomass burning (24%) were the main sources. This study indicates that long-range atmospheric transport of continental aerosols and sea-to-air emission of marine organics, as well as atmospheric oxidation and/or photochemical aging, are important factors controlling the chemical composition of organic aerosols in the marine atmosphere.

149 citations

Journal ArticleDOI
TL;DR: A facile two-step synthesis of aza[7]helicenes possessing a 6,9-dichloro-1,10-phenanthroline via double amination with aniline derivatives followed by hypervalent iodine reagent-mediated intramolecular double-NH/CH couplings was developed.
Abstract: A facile two-step synthesis of aza[7]helicenes possessing a 6-5-6-6-6-5-6 skeleton from commercially available 2,9-dichloro-1,10-phenanthroline via double amination with aniline derivatives followed by hypervalent iodine reagent-mediated intramolecular double-NH/CH couplings was developed. Single-crystal X-ray analyses of the helicenes revealed unique structures, including both a significantly twisted center and planar terminals of the skeleton. The azahelicenes show high fluorescent quantum yields (Φs) under both neutral (Φ: 0.25-0.55) and acidic conditions (Φ: up to 0.80). An enantiomerically pure aza[7]helicene showed high circularly polarized luminescence (CPL) activity under both neutral and acidic conditions (glum : up to 0.009).

149 citations

Book ChapterDOI
TL;DR: A review of theoretical approaches to explain the origin of dark energy can be found in this article, where the authors present recent observational bounds on dark energy constrained by the type Ia supernovae, cosmic microwave background, and baryon acoustic oscillations.
Abstract: Constantly accumulating observational data continue to confirm that about 70% of the energy density today consists of dark energy responsible for the accelerated expansion of the Universe. We present recent observational bounds on dark energy constrained by the type Ia supernovae, cosmic microwave background, and baryon acoustic oscillations. We review a number of theoretical approaches that have been adopted so far to explain the origin of dark energy. This includes the cosmological constant, modified matter models (such as quintessence, k-essence, coupled dark energy, unified models of dark energy and dark matter), modified gravity models (such as f(R) gravity, scalar-tensor theories, braneworlds), and inhomogeneous models. We also discuss observational and experimental constraints on those models and clarify which models are favored or ruled out in current observations.

149 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429