scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Computer science & Population. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a class of dense intercalation-conversion hybrid cathodes is proposed to realize a Li-S full cell with high volumetric and gravimetric energy densities.
Abstract: A common practise in the research of Li–S batteries is to use high electrode porosity and excessive electrolytes to boost sulfur-specific capacity. Here we propose a class of dense intercalation-conversion hybrid cathodes by combining intercalation-type Mo6S8 with conversion-type sulfur to realize a Li–S full cell. The mechanically hard Mo6S8 with fast Li-ion transport ability, high electronic conductivity, active capacity contribution and high affinity for lithium polysulfides is shown to be an ideal backbone to immobilize the sulfur species and unlock their high gravimetric capacity. Cycling stability and rate capability are reported under realistic conditions of low carbon content (~10 wt%), low electrolyte/active material ratio (~1.2 µl mg−1), low cathode porosity (~55 vol%) and high mass loading (>10 mg cm−2). A pouch cell assembled based on the hybrid cathode and a 2× excess Li metal anode is able to simultaneously deliver a gravimetric energy density of 366 Wh kg−1 and a volumetric energy density of 581 Wh l−1. Despite tremendous progress in the development of LiS batteries, their performance at the full-cell level is not as competitive as state-of-the-art Li-ion batteries. Here the authors report a full-cell architecture making use of a hybrid intercalation-conversion cathode, enabling both high volumetric and gravimetric energy densities.

384 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Chen et al. as discussed by the authors proposed an efficient algorithm which allows the depth of searched architectures to grow gradually during the training procedure, which brings two issues, namely, heavy computational overheads and weaker search stability, which they solve using search space approximation and regularization, respectively.
Abstract: Recently, differentiable search methods have made major progress in reducing the computational costs of neural architecture search. However, these approaches often report lower accuracy in evaluating the searched architecture or transferring it to another dataset. This is arguably due to the large gap between the architecture depths in search and evaluation scenarios. In this paper, we present an efficient algorithm which allows the depth of searched architectures to grow gradually during the training procedure. This brings two issues, namely, heavier computational overheads and weaker search stability, which we solve using search space approximation and regularization, respectively. With a significantly reduced search time (~7 hours on a single GPU), our approach achieves state-of-the-art performance on both the proxy dataset (CIFAR10 or CIFAR100) and the target dataset (ImageNet). Code is available at https://github.com/chenxin061/pdarts

383 citations

Journal ArticleDOI
TL;DR: In this article, the physicochemical properties of IOM and EOM of Microcystic aeruginosa under an exponential growth phase (2.01×10(11)/L) were comprehensively characterized.

382 citations

Journal ArticleDOI
TL;DR: The 16S rRNA gene clone library demonstrated that Clostridia, beta-Proteobacteria, and Bacteroidetes were the dominant microbial community when the current anaerobic fermentation system was operated at pH 8.0, which resulted in the greatest propionic acid content in the fermentative VFAs.
Abstract: Volatile fatty acids (VFAs), the carbon source of biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because of high protein content and low carbon to nitrogen mass ratio (C/N) of WAS, the production of VFAs, especially propionic acid, a more preferred VFA than acetic acid for enhanced biological phosphorus removal (EBPR), is limited. After the addition of carbohydrate (rice was used as the model matter) to the WAS anaerobic fermentation system to balance the C/N ratio, the effect of pH on WAS protein conversion and VFAs production was investigated in this paper. Experimental results showed that the addition of carbohydrate matter caused a remarkable enhancement of WAS protein conversion and protease activity, and an apparent synergistic effect between WAS and carbohydrate matter was observed. The study of pH effect revealed that pH influenced not only the total VFAs production but the percentage of individual VFA. The maximal VFAs production (52...

381 citations

Journal ArticleDOI
TL;DR: The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction, and suggests that circular RNA is a potential target to control diabetic proliferative Retinopathy.
Abstract: Background —The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circRNA in retinal vascular dysfunction induced by diabetes. Methods —Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circHIPK3 expression pattern upon diabetes mellitus-related stresses. MTT assays, EdU incorporation assays, transwell migration assays, and matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. Results —circHIPK3 expression was significantly up-regulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes. circHIPK3 silencing or over-expressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased VEGFC, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. Conclusions —The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy.

381 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,715
20208,502
20197,517
20186,352