scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Population & Adsorption. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
Xiao-Yu Xu1, Bing Yan1
TL;DR: Remarkably, it is the first Eu-doped MOF to exhibit an excellent ability for the detection of Fe(3+) and Fe(2+) in an aqueous environment without any structural disintegration of the framework.
Abstract: A layerlike MOF (MIL-124, orGa2(OH)4(C9O6H4)) has been prepared and chosen as a parent compound to encapsulate Eu3+ cations by one uncoordinated carbonyl group in its pores. The Eu3+-incorporated sample (Eu3+@MIL-124) is fully characterized, which shows excellent luminescence and good fluorescence stability in water or other organic solvents. Subsequently, we choose Eu3+@MIL-124 as sensitive probe for sensing metal ions, anions, and organic small molecules because of its robust framework. Studying of the luminescence properties reveals that the complex Eu3+@MIL-124 was developed as a highly selective and sensitive probe for detection of Fe3+ (detection limit, 0.28 μM) and Fe2+ ions through fluorescence quenching of Eu3+ and MOF over other metal ions. In connection to this, a probable sensing mechanism was also discussed in this paper. In addition, when Eu3+@MIL-124 was immersed in the different anions solutions and organic solvents, it also shows highly selective for Cr2O72–(detection limit, 0.15 μM)and a...

367 citations

Journal ArticleDOI
08 Apr 2010-Nature
TL;DR: In this paper, the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal-zygotic transition in zebrafish were mapped to study the changes in chromatin structure that accompany pluripotency and genome activation.
Abstract: After fertilization the embryonic genome is inactive until transcription is initiated during the maternal-zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal-zygotic transition in zebrafish. Histone H3 lysine 27 trimethylation (H3K27me3), which is repressive, and H3K4me3, which is activating, were not detected before the transition. After genome activation, more than 80% of genes were marked by H3K4me3, including many inactive developmental regulatory genes that were also marked by H3K27me3. Sequential chromatin immunoprecipitation demonstrated that the same promoter regions had both trimethylation marks. Such bivalent chromatin domains also exist in embryonic stem cells and are thought to poise genes for activation while keeping them repressed. Furthermore, we found many inactive genes that were uniquely marked by H3K4me3. Despite this activating modification, these monovalent genes were neither expressed nor stably bound by RNA polymerase II. Inspection of published data sets revealed similar monovalent domains in embryonic stem cells. Moreover, H3K4me3 marks could form in the absence of both sequence-specific transcriptional activators and stable association of RNA polymerase II, as indicated by the analysis of an inducible transgene. These results indicate that bivalent and monovalent domains might poise embryonic genes for activation and that the chromatin profile associated with pluripotency is established during the maternal-zygotic transition.

365 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Zhang et al. as discussed by the authors proposed a repulsion loss to prevent the proposal from shifting to surrounding objects, thus leading to more crowd-robust localization. But the repulsion term was not considered in our work.
Abstract: Detecting individual pedestrians in a crowd remains a challenging problem since the pedestrians often gather together and occlude each other in real-world scenarios. In this paper, we first explore how a state-of-the-art pedestrian detector is harmed by crowd occlusion via experimentation, providing insights into the crowd occlusion problem. Then, we propose a novel bounding box regression loss specifically designed for crowd scenes, termed repulsion loss. This loss is driven by two motivations: the attraction by target, and the repulsion by other surrounding objects. The repulsion term prevents the proposal from shifting to surrounding objects thus leading to more crowd-robust localization. Our detector trained by repulsion loss outperforms the state-of-the-art methods with a significant improvement in occlusion cases.

364 citations

Journal ArticleDOI
24 Oct 2018-Nature
TL;DR: It is concluded that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGas therefore represents a potential target for cancer prevention and therapy.
Abstract: Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP–AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING–IRF3–type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215—mediated by B-lymphoid tyrosine kinase—facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS–PARP1 interaction impedes the formation of the PARP1–Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.

363 citations

Journal ArticleDOI
TL;DR: In this article, forced convection heat transfer in a semi annulus lid under the influence of a variable magnetic field was studied, and the authors used the Control Volume based Finite Element Method (CVFEM) to solve the governing equations considering both Ferrohydrodynamic (FHD) and Magnetohydrodynamics (MHD) effects.

363 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,713
20208,502
20197,517
20186,352