scispace - formally typeset
Search or ask a question

Showing papers by "Torrey Pines Institute for Molecular Studies published in 2019"


Journal ArticleDOI
TL;DR: HLA-A2 patients achieved a meaningful therapeutic benefit with ICT-107, in both the MGMT methylated and unmethylated prespecified subgroups, whereas only Hla-A1 methylated patients had an OS benefit.
Abstract: Purpose: To evaluate the results of the randomized, double-blind, placebo-controlled phase II clinical trial of ICT-107 in patients with newly diagnosed glioblastoma. Patients and Methods: We conducted a double-blinded randomized phase II trial of ICT-107 in newly diagnosed patients with glioblastoma (GBM) and tested efficacy, safety, quality of life (QoL), and immune response. HLA-A1+ and/or -A2+–resected patients with residual tumor ≤1 cm3 received radiotherapy and concurrent temozolomide. Following completion of radiotherapy, 124 patients, randomized 2:1, received ICT-107 [autologous dendritic cells (DC) pulsed with six synthetic peptide epitopes targeting GBM tumor/stem cell–associated antigens MAGE-1, HER-2, AIM-2, TRP-2, gp100, and IL13Rα2] or matching control (unpulsed DC). Patients received induction ICT-107 or control weekly × 4 followed by 12 months of adjuvant temozolomide. Maintenance vaccinations occurred at 1, 3, and 6 months and every 6 months thereafter. Results: ICT-107 was well tolerated, with no difference in adverse events between the treatment and control groups. The primary endpoint, median overall survival (OS), favored ICT-107 by 2.0 months in the intent-to-treat (ITT) population but was not statistically significant. Progression-free survival (PFS) in the ITT population was significantly increased in the ICT-107 cohort by 2.2 months (P = 0.011). The frequency of HLA-A2 primary tumor antigen expression was higher than that for HLA-A1 patients, and HLA-A2 patients had higher immune response (via Elispot). HLA-A2 patients achieved a meaningful therapeutic benefit with ICT-107, in both the MGMT methylated and unmethylated prespecified subgroups, whereas only HLA-A1 methylated patients had an OS benefit. Conclusions: PFS was significantly improved in ICT-107–treated patients with maintenance of QoL. Patients in the HLA-A2 subgroup showed increased ICT-107 activity clinically and immunologically.

139 citations



Journal ArticleDOI
TL;DR: The development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups are reported, including several applications to the simplification of synthetic problems and to parallel synthesis.
Abstract: Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols). The reactions are uniformly mild, operationally simple, and, in the case of ketone synthesis, broad in scope (including several applications to the simplification of synthetic problems and to parallel synthesis). Finally, an extensive mechanistic study of the ketone synthesis is performed to trace the elementary steps of the catalytic cycle and provide the end-user with a clear and understandable rati...

109 citations


Journal ArticleDOI
TL;DR: The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions.
Abstract: DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.

98 citations


Posted Content
TL;DR: Overall, it is found that 3D point cloud classifiers are weak to adversarial attacks, but they are also more easily defensible compared to 2D image classifiers.
Abstract: 3D object classification and segmentation using deep neural networks has been extremely successful. As the problem of identifying 3D objects has many safety-critical applications, the neural networks have to be robust against adversarial changes to the input data set. There is a growing body of research on generating human-imperceptible adversarial attacks and defenses against them in the 2D image classification domain. However, 3D objects have various differences with 2D images, and this specific domain has not been rigorously studied so far. We present a preliminary evaluation of adversarial attacks on deep 3D point cloud classifiers, namely PointNet and PointNet++, by evaluating both white-box and black-box adversarial attacks that were proposed for 2D images and extending those attacks to reduce the perceptibility of the perturbations in 3D space. We also show the high effectiveness of simple defenses against those attacks by proposing new defenses that exploit the unique structure of 3D point clouds. Finally, we attempt to explain the effectiveness of the defenses through the intrinsic structures of both the point clouds and the neural network architectures. Overall, we find that networks that process 3D point cloud data are weak to adversarial attacks, but they are also more easily defensible compared to 2D image classifiers. Our investigation will provide the groundwork for future studies on improving the robustness of deep neural networks that handle 3D data.

76 citations


Proceedings ArticleDOI
01 Sep 2019
TL;DR: In this article, a preliminary evaluation of adversarial attacks on 3D point cloud classifiers was conducted by evaluating 2D images, and extending those attacks to reduce the perceptibility of the perturbations in 3D space.
Abstract: 3D object classification using deep neural networks has been extremely successful. As the problem of identifying 3D objects has many safety-critical applications, the neural networks have to be robust against adversarial changes to the input data set. We present a preliminary evaluation of adversarial attacks on 3D point cloud classifiers by evaluating adversarial attacks that were proposed for 2D images, and extending those attacks to reduce the perceptibility of the perturbations in 3D space. We also show the effectiveness of simple defenses against those attacks. Finally, we attempt to explain the effectiveness of the defenses through the intrinsic structures of both the point clouds and the neural networks. Overall, we find that 3D point cloud classifiers are weak to adversarial attacks, but they are also more easily defensible compared to 2D image classifiers. Our investigation will provide the groundwork for future studies on improving the robustness of deep neural networks that handle 3D data.

76 citations


Journal ArticleDOI
TL;DR: This review focuses on ability of mercury to elicit inflammatory and autoimmune responses in both humans and experimental animal models, and suggests that mercury-induced autoimmunity may arise by both common and specific pathways, thereby raising the possibility of devising criteria for environmentally associated autoIMmunity.

69 citations


Journal ArticleDOI
TL;DR: A new protocol has been devised to enable the coupling of general tertiary systems using nickel catalysis, and it can be used to simplify the synthesis of medicinally relevant motifs bearing quaternary centers.
Abstract: This work bridges a gap in the cross-coupling of aliphatic redox-active esters with aryl zinc reagents. Previously limited to primary, secondary, and specialized tertiary centers, a new protocol has been devised to enable the coupling of general tertiary systems using nickel catalysis. The scope of this operationally simple method is broad, and it can be used to simplify the synthesis of medicinally relevant motifs bearing quaternary centers.

65 citations


Journal ArticleDOI
TL;DR: The one-pot synthesis of Idraparinux is demonstrated here is an effective strategy and should be applicable to the modular assembly of other heparan sulfates with regiodefined sulfation pattern for functional study.
Abstract: Idraparinux is a fully O-sulfated α-methyl glycoside of heparin pentasaccharide motif known to interact with the antithrombin III domain and act as anticoagulant. The current most effective synthesis of Idraparinux is complicated and nonstereoselective, requiring numerous stepwise procedures with low yields. We report here an efficient modular one-pot synthesis of Idraparinux involving the use of a glycosyl phosphate with 6- O- tert-butyl diphenyl silyl group and a d-glucuronic acid-containing disaccharide thioglycoside with 6- O-acetyl group as donor building blocks for the α-directing one-pot glycosylations with an l-iduronic acid-containing disaccharide acceptor building block. The uronic acid was incorporated in a disaccharide module used in the one-pot synthesis to avoid the complicated late-stage installation of these acidic sugars. The one-pot synthesis of Idraparinux demonstrated here is an effective strategy and should be applicable to the modular assembly of other heparan sulfates with regiodefined sulfation pattern for functional study.

61 citations


Journal ArticleDOI
TL;DR: The results indicate that differences in performance among miRNA profiling platforms impact ability to detect biological differences among samples and thus their relative utility for research and clinical use.

56 citations


Journal ArticleDOI
TL;DR: Over the last decade important technical advances in mass spectrometry have driven an increased capability for proteomic discovery and new methods to capture important biological information have been developed to take advantage of improving proteomic tools.
Abstract: Mass spectrometry is one of the key technologies of proteomics, and over the last decade important technical advances in mass spectrometry have driven an increased capability for proteomic discovery. In addition, new methods to capture important biological information have been developed to take advantage of improving proteomic tools.

Journal ArticleDOI
01 Jul 2019
TL;DR: This work demonstrates that unrecyclable thermoset materials can be reprocessed using the concept of associative dynamic bonding, vitrimers, and promises recycling and even upcycling and reprocessing of previously thought intractable materials.
Abstract: A new approach for reprocessing of existing thermoset waste is presented. This work demonstrates that unrecyclable thermoset materials can be reprocessed using the concept of associative dynamic bonding, vitrimers. The developed recycling methodology relies on swelling the thermoset network into a solution of a catalyst, which enables transesterification reactions allowing dynamic bond exchange between ester and hydroxyl groups within the thermoset network. Thermal and mechanical properties for recycled polyurethane and epoxy networks are studied and a strategy to maintain the properties of recycled materials is discussed. The developed methodology promises recycling and even upcycling and reprocessing of previously thought intractable materials. Moreover, processability of vitrimerized thermosets with common thermoplastic manufacturing methods opens up the possibility of tuning recycled networks by adding nanoparticles. This flexibility keeps the application window of recycled thermosets very broad.

Journal ArticleDOI
TL;DR: The results reveal that upregulation of FOXM1 by H3K79me2 in pancreatic cancer and colon cancer significantly inhibits maturation phenotypes and function of BMDCs through the Wnt5a signaling pathway, and thus provide novel insights into FoxM1‐based antitumor immunotherapy.

Journal ArticleDOI
TL;DR: The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole was shown to have good in vitro anti-Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma and was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.
Abstract: A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti-Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti-Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.

Journal ArticleDOI
TL;DR: It is demonstrated that microalgae can be a viable protein production and oral delivery system to vaccinate fish and give greater justification to continue exploring the concept of microalgal‐based oral vaccines.

Journal ArticleDOI
TL;DR: The results show that this approach, if optimized, could circumvent the obstacles to efficient gene delivery encountered with current gene delivery approaches and provide an effective, nontoxic therapeutic alternative for metastatic disease.
Abstract: There is an urgent need for targeted biological therapies for prostate cancer with greater efficacy and less toxicity, particularly for metastatic disease, where current therapies are not curative. Therapeutic adenoviral vectors or oncolytic adenoviruses offer the possibility of a competent, nontoxic therapeutic alternative for prostate cancer. However, free viral particles must be delivered locally, an approach that does not address metastatic disease, and they display poor tumor penetration. To fully exploit the potential of these vectors, we must develop methods that improve intratumoral dissemination and allow for systemic delivery. This study establishes a proof-of-principle rationale for a novel human mesenchymal stem (stromal) cell-based approach to improving vector delivery to tumors. We have generated mesenchymal stem cell-derived packaging cells for adenoviruses (E1-modified mesenchymal stem cells) by modifying human mesenchymal stem cells with the adenovirus (type C) E1A/B genes needed for viral replication. Using cell-based assays, we have demonstrated that two adenoviral vectors, replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus, packaged by E1A/B-modified mesenchymal stem cells, suppress the growth of prostate cancer cells in culture. Using subcutaneous xenograft models for human prostate cancer in mice, we have shown that E1A/B-modified mesenchymal stem cells display tumor tropism in tumor-bearing nude mice, that E1A/B-modified mesenchymal stem cells disseminate well within tumors, and that replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus-loaded E1-modified mesenchymal stem cells suppresses tumor growth in mice. The results show that this approach, if optimized, could circumvent the obstacles to efficient gene delivery encountered with current gene delivery approaches and provide an effective, nontoxic therapeutic alternative for metastatic disease.

Journal ArticleDOI
TL;DR: The data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.
Abstract: Understanding the role of the epigenome in protein-misfolding diseases remains a challenge in light of genetic diversity found in the world-wide population revealed by human genome sequencing efforts and the highly variable response of the disease population to therapeutics. An ever-growing body of evidence has shown that histone deacetylase (HDAC) inhibitors (HDACi) can have significant benefit in correcting protein-misfolding diseases that occur in response to both familial and somatic mutation. Cystic fibrosis (CF) is a familial autosomal recessive disease, caused by genetic diversity in the CF transmembrane conductance regulator (CFTR) gene, a cyclic Adenosine MonoPhosphate (cAMP)-dependent chloride channel expressed at the apical plasma membrane of epithelial cells in multiple tissues. The potential utility of HDACi in correcting the phenylalanine 508 deletion (F508del) CFTR variant as well as the over 2000 CF-associated variants remains controversial. To address this concern, we examined the impact of US Food and Drug Administration-approved HDACi on the trafficking and function of a panel of CFTR variants. Our data reveal that panobinostat (LBH-589) and romidepsin (FK-228) provide functional correction of Class II and III CFTR variants, restoring cell surface chloride channel activity in primary human bronchial epithelial cells. We further demonstrate a synergistic effect of these HDACi with Vx809, which can significantly restore channel activity for multiple CFTR variants. These data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.

Journal ArticleDOI
TL;DR: Targeted outreach, enrollment, and management of large remote clinical trials is feasible and can be improved with an iterative approach, although more work is needed to learn how to best recruit and retain potential research participants.
Abstract: Objectives The advent of large databases, wearable technology, and novel communications methods has the potential to expand the pool of candidate research participants and offer them the flexibility and convenience of participating in remote research. However, reports of their effectiveness are sparse. We assessed the use of various forms of outreach within a nationwide randomized clinical trial being conducted entirely by remote means. Methods Candidate participants at possibly higher risk for atrial fibrillation were identified by means of a large insurance claims database and invited to participate in the study by their insurance provider. Enrolled participants were randomly assigned to one of two groups testing a wearable sensor device for detection of the arrhythmia. Results Over 10 months, the various outreach methods used resulted in enrollment of 2659 participants meeting eligibility criteria. Starting with a baseline enrollment rate of 0.8% in response to an email invitation, the recruitment campaign was iteratively optimized to ultimately include website changes and the use of a five-step outreach process (three short, personalized emails and two direct mailers) that highlighted the appeal of new technology used in the study, resulting in an enrollment rate of 9.4%. Messaging that highlighted access to new technology outperformed both appeals to altruism and appeals that highlighted accessing personal health information. Conclusions Targeted outreach, enrollment, and management of large remote clinical trials is feasible and can be improved with an iterative approach, although more work is needed to learn how to best recruit and retain potential research participants. Trial registration Clinicaltrials.gov NCT02506244 . Registered 23 July 2015.

Journal ArticleDOI
TL;DR: The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.
Abstract: Extracellular signal-regulated kinases (ERK1/2) are mitogen-activated protein kinases (MAPKs) that play a pro-tumorigenic role in numerous cancers. ERK1/2 possess two protein-docking sites that are distinct from the active site: the D-recruitment site (DRS) and the F-recruitment site. These docking sites facilitate substrate recognition, intracellular localization, signaling specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic context may overcome many problems associated with traditional ATP-competitive inhibitors. Here, we identified a new class of inhibitors that target the ERK DRS by screening a synthetic combinatorial library of more than 30 million compounds. The screen detects the competitive displacement of a fluorescent peptide from the DRS of ERK2. The top molecular scaffold from the screen was optimized for structure-activity relationship by positional scanning of different functional groups. This resulted in 10 compounds with similar binding affinities and a shared core structure consisting of a tertiary amine hub with three functionalized cyclic guanidino branches. Compound 2507-1 inhibited ERK2 from phosphorylating a DRS-targeting substrate and prevented the phosphorylation of ERK2 by a constitutively active MEK1 (MAPK/ERK kinase 1) mutant. Interaction between an analogue, 2507-8, and the ERK2 DRS was confirmed by nuclear magnetic resonance and X-ray crystallography. 2507-8 forms critical interactions at the common docking domain residue Asp319 via an arginine-like moiety that is shared by all 10 hits, suggesting a common binding mode. The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.

Posted Content
TL;DR: Three possible shape attacks for attacking 3D point cloud classification are explored and it is shown that some are able to be effective even against preprocessing steps, like the previously proposed point-removal defenses.
Abstract: The importance of training robust neural network grows as 3D data is increasingly utilized in deep learning for vision tasks in robotics, drone control, and autonomous driving. One commonly used 3D data type is 3D point clouds, which describe shape information. We examine the problem of creating robust models from the perspective of the attacker, which is necessary in understanding how 3D neural networks can be exploited. We explore two categories of attacks: distributional attacks that involve imperceptible perturbations to the distribution of points, and shape attacks that involve deforming the shape represented by a point cloud. We explore three possible shape attacks for attacking 3D point cloud classification and show that some of them are able to be effective even against preprocessing steps, like the previously proposed point-removal defenses.

Journal ArticleDOI
TL;DR: The copper-catalyzed hydroboration of benzylidenecyclopropanes, conveniently accessed in one step from readily available benzaldehydes, is reported, giving access to valuable synthetic intermediates.
Abstract: The copper-catalyzed hydroboration of benzylidenecyclopropanes, conveniently accessed in one step from readily available benzaldehydes, is reported. Under otherwise identical reaction conditions, t...

Journal ArticleDOI
TL;DR: The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of alcohol use disorders characterized by excessive alcohol consumption such as binge drinking.
Abstract: Background The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. Methods Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. Results We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. Conclusions The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.

Journal ArticleDOI
TL;DR: This work identifies huntingtin (Htt)-associated protein (HAP1), a protein that is involved in Huntington's disease (HD), as a new target of UBE3A and demonstrates that HAP1 regulates autophagy at the initiation stage by promoting PtdIns3K complex formation and enhancing its activity.

Journal ArticleDOI
TL;DR: The results suggest that RRx-001 as a multifunctional anticancer agent, which sensitizes cancer cells to the cytotoxic effects of chemotherapy and radiation, may also have beneficial cardioprotective effects.
Abstract: Anthracycline chemotherapy (e.g., doxorubicin or DOX) is associated with a cumulative dose-dependent cardiac dysfunction that may lead to congestive heart failure, which limits both its use and usefulness in the clinic. The cardiotoxicity may manifest acutely and/or months or years after treatment with doxorubicin has ended. Experimental and human data have demonstrated that angiotensin-converting enzyme/angiotensin-receptor antagonists mediate a cardioprotective effect against anthracycline toxicity. In this study, with the angiotensin receptor blocker, candesartan, as a positive control, we evaluated whether pretreatment with the hypoxic nitric oxide generating anticancer agent, RRx-001, could reduce acute DOX-induced cardiotoxicity. A total of 24 BALB/c mice were randomized for prophylactic treatment with vehicle, RRx-001, candesartan, or no-intervention control. Within each of the three intervention arms, mice received treatment with DOX. Murine pressure-volume analysis was performed with microconductance catheters to characterize the degree of cardiovascular dysfunction within each group. The following hemodynamic parameters were monitored: left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase of left ventricular pressure (±d P/d tmax). Five days after doxorubicin injection, untreated (with RRx-001) mice displayed significantly impaired systolic (LVSP, -27%; d P/d tmax, -25%; left ventricular developed pressure (LVDP), +33%; P < 0.05) and global (stroke volume (SV), -52%; ejection fraction (EF), -20%; stroke work (SW), -62.5%; heart rate (HR), -18%; cardiac output (CO), -57%; mean blood arterial pressure (MAP), -30%; systemic vascular resistance (SVR), +20%; P < 0.05) LV functions when compared with the untreated (with RRx-001) group. In contrast, RRx-001-treated mice showed improved variables of systolic (LVSP, +27%; d P/d tmax, +25%; LVDP, -33%; P < 0.05) and global (SV, +52%; EF, +20%; SW, +62.5%; HR, +18%; CO, +57%; MAP, +30%; SVR, -20%; P < 0.05) LV functions compared with untreated doxorubicin mice. Similar to the positive control, candesartan, the cardiotoxic effects of DOX in mice were partially attenuated by the prophylactic administration of RRx-001. These results suggest that RRx-001 as a multifunctional anticancer agent, which sensitizes cancer cells to the cytotoxic effects of chemotherapy and radiation, may also have beneficial cardioprotective effects.

Journal ArticleDOI
TL;DR: A novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood capable of controlling effector T cell responses is identified, providing a new target for therapeutic intervention.
Abstract: Hepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood, called CD8αα Tunc, capable of controlling effector T cell responses. They are NK1.1+ (CD161+ in human), express NK-inhibitory receptors, and express the promyelocytic leukemia zinc finger (PLZF) transcription factor that distinguishes them from conventional CD8+ T cells. These cells display a cytotoxic phenotype and use a perforin-dependent mechanism to control Ag-induced or T cell-mediated autoimmune diseases. CD8αα Tunc are dependent upon IL-15/IL-2Rβ signaling and PLZF for their development and/or survival. They are Foxp3-negative and their regulatory activity is associated with a functionally distinct Qa-1b-dependent population coexpressing CD11c and CD244. A polyclonal TCR repertoire, an activated/memory phenotype, and the presence of CD8αα Tunc in NKT- and in MAIT-deficient as well as in germ-free mice indicates that these cells recognize diverse self-protein Ags. Our studies reveal a distinct population of unconventional CD8+ T cells within the natural immune repertoire capable of controlling autoimmunity and also providing a new target for therapeutic intervention.

Journal ArticleDOI
TL;DR: Results collectively indicate that TFEB modulates Aβ production not only by increasing α-secretase processing of APP through ADAM10 upregulation but also by augmenting β-CTF levels possibly via altered proteasome-mediated catabolism.

Journal ArticleDOI
04 Apr 2019
TL;DR: A Parkinson mouse model is developed by reducing Mcl-1 gene dosage by half, which leads to dopaminergic cell loss and motor impairments in Park2 knockout mice that otherwise do not exhibit any of the hallmark phenotypes associated with Parkinson’s disease.
Abstract: Mutations in the PARK2 gene are associated with early onset Parkinsonism. The Park2−/− mouse, however, does not exhibit neurodegeneration or other Parkinson’s disease (PD) phenotypes. Previously, we discovered that translation of Mcl-1, a pro-survival factor, is upregulated in the Park2−/− mouse, suggesting a compensatory mechanism during development. Here we generated the Park2−/− Mcl-1+/− mouse and show that by reducing Mcl-1 gene dosage by 50%, the Park2−/− genotype is sensitized, conferring both dopaminergic neuron loss and motor impairments. We propose that this murine model could be a useful tool for dissecting PD etiology and developing treatment strategies against this neurodegenerative disease. Susanna Ekholm-Reed et al. develop a Parkinson mouse model by reducing Mcl-1 gene dosage by half, which leads to dopaminergic cell loss and motor impairments in Park2 knockout mice that otherwise do not exhibit any of the hallmark phenotypes associated with Parkinson’s disease.

Journal ArticleDOI
16 Dec 2019-PeerJ
TL;DR: This work reformulate the problem of deduplicating UMIs in a manner that enables optimizations to be made, and more efficient data structures to be used, and presents a new formulation of the UMI deduPLication problem, which can be solved faster, with more sophisticated data structures.
Abstract: Background Unique Molecular Identifiers (UMI) are used in many experiments to find and remove PCR duplicates. There are many tools for solving the problem of deduplicating reads based on their finding reads with the same alignment coordinates and UMIs. However, many tools either cannot handle substitution errors, or require expensive pairwise UMI comparisons that do not efficiently scale to larger datasets. Results We reformulate the problem of deduplicating UMIs in a manner that enables optimizations to be made, and more efficient data structures to be used. We implement our data structures and optimizations in a tool called UMICollapse, which is able to deduplicate over one million unique UMIs of length 9 at a single alignment position in around 26 s, using only a single thread and much less than 10 GB of memory. Conclusions We present a new formulation of the UMI deduplication problem, and show that it can be solved faster, with more sophisticated data structures.

Journal ArticleDOI
15 Mar 2019
TL;DR: The analytical and simulation results provide a first benchmark characterizing this architecture and the definition of guidelines for its future realistic study and implementation.
Abstract: The evolution of smart city services and applications requires a more efficient wireless infrastructure to provide the needed data rate to users in a high-density environment with high mobility, satisfying at the same time the request for high-connectivity and low-energy consumption. To address the challenges in this new network scenario, we propose to opportunistically rely on the increasing number of connected vehicles in densely populated urban areas. The idea is to support the macro base station (BS) with a secondary communication tier composed of a set of smart and connected vehicles that are in movement in the urban area. As a first step towards a comprehensive cost-benefit analysis of this architecture, this paper considers the case where these vehicles are equipped with femto-mobile access points (fmAPs) and constitute a mobile out-of-band relay infrastructure. We first study this network system with a continuous time model, in which three techniques to select an fmAP (if more than one is available) are proposed and the maximal feasible gain in the data rate is characterized as a function of the vehicle density, average vehicle speeds, handoff overhead cost, as well as physical layer parameters. We then introduce a time slotted model, in which we consider a more realistic communication channel, with an exponential path loss model, and we investigate the tradeoff between energy consumption and expected data rate, as a function of the system parameters. The analytical and simulation results, with both the continuous and time slotted models, provide a first benchmark characterizing this architecture and the definition of guidelines for its future realistic study and implementation.

Journal ArticleDOI
TL;DR: In the present study, ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins H1, H2 and A2/B1 are identified as targets of anti-melanoma compound 2155–14, a first report suggesting that these proteins could be targeted for melanoma therapy.
Abstract: Background/aims Despite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for approaches that identify new melanoma targets. We have previously reported a discovery of novel anti-melanoma compound 2155-14 (Onwuha-Ekpete et al., J Med Chem. 2014 Feb 27; 57(4):1599-608). In the report presented herein we aim to identify its target(s) and mechanism of action. Methods We utilized biotinylated analog of 2155-14 to pull down its targets from melanoma cells. Proteomics in combination with western blot were used to identify the targets. Mechanism of action of 2155-14 was determined using flow cytometry, RT-PCR, microscopy, western blot, and enzymatic activity assays. Where applicable, one-way analysis of variance (ANOVA) was used followed by Dunnett post hoc test. Results In the present study, we identified ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) H1, H2 and A2/B1 as targets of anti-melanoma compound 215514. To the best of our knowledge, this is a first report suggesting that these proteins could be targeted for melanoma therapy. Mechanistic investigations showed that 2155-14 induces ER stress leading to potentiation of basal autophagy resulting in melanoma cell death in BRAF and NRAS mutated melanoma cells. Conclusion Identification of mode of action of 2155-14 may provide insight into novel therapies against a broad range of melanoma subtypes. These studies were enabled by the novel probe derived from a mixture-based library, an important class of chemical biology tools for discovering novel targets.