scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: T cell & Antigen. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal Article
TL;DR: Examples are presented in which an SPCL, composed in total of 52,128,400 acetylated hexa-peptides, is used along with an iterative selection process to precisely identify the antigenic determinant of a peptide recognized by a monoclonal antibody using competitive enzyme-linked immunosorbent assay.
Abstract: The systematic preparation of synthetic peptide combinatorial libraries (SPCLs), each composed of tens of millions of peptides that can be screened in existing diagnostically or pharmacologically relevant in vitro assay systems, is reviewed. The identification of optimal peptide sequences has been achieved through the screening in solution of SPCLs, each element of which is composed of more than 100,000 nonsupport-bound peptides in equimolar representation, along with an iterative synthesis and screening process. Examples are presented in which an SPCL, composed in total of 52,128,400 acetylated hexa-peptides, is used along with an iterative selection process to precisely identify the antigenic determinant of a peptide recognized by a monoclonal antibody using competitive enzyme-linked immunosorbent assay. This same library was also used to develop highly potent antimicrobial peptides in bacterial growth inhibition assays. A separate non-acetylated SPCL was used to screen and identify high affinity peptide ligands using an opiate radio-receptor binding assay.

335 citations

Journal ArticleDOI
TL;DR: MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments.
Abstract: Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments.

333 citations

Journal ArticleDOI
TL;DR: By surveying the literature, this compilation can be used to make reasonable estimates for a wide range of organisms in the calculation of relative abundance and a phylogenetic analysis is used to offer insights into the evolution of both genome size and SSU rDNA copy number.
Abstract: > Abstract Determination of the relative abundance of a specific prokaryote in an environmental sample is of major interest in applied and environmental microbiology. Relative abundance can be calculated using knowledge of SSU rDNA copy number, amount of SSU rDNA in the sample, and a weighted average estimate of the genome sizes for organisms in the original sample. By surveying the literature, we provide estimates of genome size and SSU rDNA copy number for 303 and 101 prokaryotes, respectively. This compilation can be used to make reasonable estimates for a wide range of organisms in the calculation of relative abundance. A statistical analysis suggests that no correlation exists between genome size and SSU rDNA copy number. A phylogenetic analysis is used to offer insights into the evolution of both genome size and SSU rDNA copy number.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p93.html

332 citations

Journal ArticleDOI
17 Nov 1989-Cell
TL;DR: The findings suggest that the specialized amino-terminal domains of other members of the src family of intracellular tyrosine kinases may also mediate transmembrane signaling via coupling to the cytoplasmic domains of specific trans Membrane proteins.

329 citations

Journal ArticleDOI
TL;DR: Evidence is presented that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps and it is hypothesized that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.
Abstract: Human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies are thought be distinguished from nonneutralizing antibodies by their ability to recognize functional gp120/gp41 envelope glycoprotein (Env) trimers. The antibody responses induced by natural HIV-1 infection or by vaccine candidates tested to date consist largely of nonneutralizing antibodies. One might have expected a more vigorous neutralizing response, particularly against virus particles that bear functional trimers. The recent surprising observation that nonneutralizing antibodies can specifically capture HIV-1 may provide a clue relating to this paradox. Specifically, it was suggested that forms of Env, to which nonneutralizing antibodies can bind, exist on virus surfaces. Here, we present evidence that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps. Using a native electrophoresis band shift assay, we show that antibody-trimer binding predicts neutralization and that the nonfunctional forms of Env may account for virus capture by nonneutralizing antibodies. We hypothesize that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.

328 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842