scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: T cell & Antigen. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new method to effectively identify both microbial epitopes and candidate autoantigens is described and it is found that the antigen specificity of a single T-cell clone can be degenerate and yet the clone can preferentially recognize different peptides derived from the same organism, thus demonstrating that flexibility in T- cell recognition does not preclude specificity.
Abstract: Elucidating the cellular immune response to infectious agents is a prerequisite for understanding disease pathogenesis and designing effective vaccines. In the identification of microbial T-cell epitopes, the availability of purified or recombinant bacterial proteins has been a chief limiting factor. In chronic infectious diseases such as Lyme disease, immune-mediated damage may add to the effects of direct infection by means of molecular mimicry to tissue autoantigens. Here, we describe a new method to effectively identify both microbial epitopes and candidate autoantigens. The approach combines data acquisition by positional scanning peptide combinatorial libraries and biometric data analysis by generation of scoring matrices. In a patient with chronic neuroborreliosis, we show that this strategy leads to the identification of potentially relevant T-cell targets derived from both Borrelia burgdorferi and the host. We also found that the antigen specificity of a single T-cell clone can be degenerate and yet the clone can preferentially recognize different peptides derived from the same organism, thus demonstrating that flexibility in T-cell recognition does not preclude specificity. This approach has potential applications in the identification of ligands in infectious diseases, tumors and autoimmune diseases.

219 citations

Journal ArticleDOI
TL;DR: The rescue of a diverse panel of 19 PrP-specific recombinant monoclonal antibodies from phage display libraries prepared from PrP deficient mice immunized with infectious prions either in the form of rods or PrP 27-30 dispersed into liposomes is reported.
Abstract: The fundamental event in prion disease is thought to be the posttranslational conversion of the cellular prion protein (PrPC) into a pathogenic isoform (PrPSc). The occurrence of PrPC on the cell surface and PrPSc in amyloid plaques in situ or in aggregates following purification complicates the study of the molecular events that underlie the disease process. Monoclonal antibodies are highly sensitive probes of protein conformation which can be used under these conditions. Here, we report the rescue of a diverse panel of 19 PrP-specific recombinant monoclonal antibodies from phage display libraries prepared from PrP deficient (Prnp0/0) mice immunized with infectious prions either in the form of rods or PrP 27-30 dispersed into liposomes. The antibodies recognize a number of distinct linear and discontinuous epitopes that are presented to a varying degree on different PrP preparations. The epitope reactivity of the recombinant PrP(90-231) molecule was almost indistinguishable from that of PrPC on the cell surface, validating the importance of detailed structural studies on the recombinant molecule. Only one epitope region at the C terminus of PrP was well presented on both PrPC and PrPSc, while epitopes associated with most of the antibodies in the panel were present on PrPC but absent from PrPSc.

218 citations

Journal ArticleDOI
TL;DR: In this article, a low-cost, low-power volatile organic compound (VOC) sensor was constructed from an array of micromachined parallel-plate capacitors, which was used in industrial leak monitoring applications or for homeland defense.
Abstract: A low-cost, low-power volatile organic compound (VOC) sensor has been constructed from an array of micromachined parallel-plate capacitors. The sensor has demonstrated detection of many VOCs well below the lower explosive limits and could be used in industrial leak monitoring applications or for homeland defense. In place of a standard dielectric, the individual capacitors were filled with selectively absorbing polymers. Absorption of a target vapor alters the permittivity of the polymers and thereby changes the capacitance of the elements in the array. A variety of polymers have been used, including polyethylene-co-vinylacetate, which was sensitive to nonpolar hydrocarbons, and siloxanefluoro alcohol, which was highly sensitive to polar VOCs and chemical warfare agent simulants. The response magnitude for each element depends on a combination of different phenomenon such as the dielectric constant of the analyte and polymer swelling. The measured sensitivity of the sensor to most VOCs was found to be in the low parts per million (ppm) range. The response magnitude from one capacitor to the next is reproducible to within 3.2% at 20 °C. The sensor typically responded within a second but frequently required 5–10 min to reach equilibrium. Response times could likely be substantially improved with an optimized capacitor structure that contains a decreased gap between the plates and provisions for more rapid vapor exchange.

216 citations

Journal ArticleDOI
TL;DR: The data reveal what is believed to be a novel mechanism in which interactions among type II NKT cells and hepatic DCs result in regulation of iNKT cell activity that can be exploited for intervention in inflammatory diseases, including autoimmunity and asthma.
Abstract: Because of the paucity of known self lipid-reactive ligands for NKT cells, interactions among distinct NKT cell subsets as well as immune consequences following recognition of self glycolipids have not previously been investigated. Here we examined cellular interactions and subsequent immune regulatory mechanism following recognition of sulfatide, a self-glycolipid ligand for a subset of CD1d-restricted type II NKT cells. Using glycolipid/CD1d tetramers and cytokine responses, we showed that activation of sulfatide-reactive type II NKT cells and plasmacytoid DCs caused IL-12- and MIP-2-dependent recruitment of type I, or invariant, NKT (iNKT) cells into mouse livers. These recruited iNKT cells were anergic and prevented concanavalin A-induced (ConA-induced) hepatitis by specifically blocking effector pathways, including the cytokine burst and neutrophil recruitment that follow ConA injection. Hepatic DCs from IL-12(+/+) mice, but not IL-12(-/-) mice, adoptively transferred anergy in recipients; thus, IL-12 secretion by DCs enables them to induce anergy in iNKT cells. Our data reveal what we believe to be a novel mechanism in which interactions among type II NKT cells and hepatic DCs result in regulation of iNKT cell activity that can be exploited for intervention in inflammatory diseases, including autoimmunity and asthma.

211 citations

Journal ArticleDOI
01 Sep 2002-Traffic
TL;DR: This Toolbox updates the previous list to include additional disorders that were recently identified to be related to intracellular trafficking, and reflects significant advances in understanding of the molecular basis of these defects.
Abstract: As more details emerge on the mechanisms that mediate and control intracellular transport, the molecular basis for variety of human diseases has been revealed. In turn, disease pathology and physiology shed light on the intricate controls that regulate intracellular transport to assure proper cellular and tissue function and homeostasis. We previously listed a number of diseases that are the result of defects in intracellular transport, or cause defects in intracellular transport. (Aridor M, Hannan LA. Traffic Jam: A compendium of human diseases that affect intracellular transport processes. Traffic 2000; 1: 836–851). This Toolbox updates the previous list to include additional disorders that were recently identified to be related to intracellular trafficking. In the time since we have published our first list there have been significant advances in understanding of the molecular basis of these defects. Such advances will pave the way to future effective therapeutics.

211 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842