scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: T cell & Antigen. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A tritiated form of orphanin FQ (a heptadecapeptide also known as Nociceptin) has been prepared and data obtained indicate that the N- terminus plays a more critical role in binding than the C-terminus and that residues 1, 2, 4, and 8 are essential for binding.

138 citations

Journal ArticleDOI
TL;DR: Mapping mutations onto the recently determined crystal structure of human GlyRS showed them within a band encompassing both sides of the dimer interface, with two CMT-causing mutations being at sites that are complementary partners of a “kissing” contact across theDimer interface.
Abstract: Charcot–Marie–Tooth (CMT) diseases are the most common heritable peripheral neuropathy. At least 10 different mutant alleles of GARS (the gene for glycyl-tRNA synthetase) have been reported to cause a dominant axonal form of CMT (type 2D). A unifying connection between these mutations and CMT has been unclear. Here, mapping mutations onto the recently determined crystal structure of human GlyRS showed them within a band encompassing both sides of the dimer interface, with two CMT-causing mutations being at sites that are complementary partners of a “kissing” contact across the dimer interface. The CMT phenotype is shown here to not correlate with aminoacylation activity. However, most mutations affect dimer formation (to enhance or weaken). Seven CMT-causing variants and the wild-type protein were expressed in transfected neuroblastoma cells that sprout primitive neurites. Wild-type GlyRS distributed into the nascent neurites and was associated with normal neurite sprouting. In contrast, all mutant proteins were distribution-defective. Thus, CMT-causing mutations of GlyRS share a common defect in localization. This defect may be connected in some way to a change in the surfaces at the dimer interface.

137 citations

Journal ArticleDOI
TL;DR: This work proposes a fast yet accurate and robust implementation of the boundary element solution of the Poisson equation, the REBEL algorithm, and demonstrates for the first time that such a simulation can be performed in a realistic time frame.
Abstract: Solvation effects play a profound role in the energetics of protein folding. While a continuum dielectric model of solvation may provide a sufficiently accurate estimate of the solvation effects, until now this model was too computationally expensive and unstable for folding simulations. Here we proposed a fast yet accurate and robust implementation of the boundary element solution of the Poisson equation, the REBEL algorithm. Using our earlier double-energy scheme, we included for the first time the mathematically rigorous continuous REBEL solvation term in our Biased Probability Monte Carlo (BPMC) simulations of the peptide folding. The free energy of a 23-residue beta beta alpha-peptide was then globally optimized with and without the solvation electrostatics contribution. An ensemble of beta beta alpha conformations was found at and near the global minimum of the energy function with the REBEL electrostatic solvation term. Much poorer correspondence to the native solution structure was found in the "control" simulations with a traditional method to account for solvation via a distance-dependent dielectric constant. Each simulation took less than 40 h (21 h without electrostatic solvation calculation) on a single Alpha 677 MHz CPU and involved more than 40,000 solvation energy evaluations. This work demonstrates for the first time that such a simulation can be performed in a realistic time frame. The proposed procedure may eliminate the energy evaluation accuracy bottleneck in folding simulations.

137 citations

Journal ArticleDOI
TL;DR: A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products, and fingerprint-based comparisons indicate that these combinatorials are structurally different than current drugs.
Abstract: A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds, and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity, and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR, and natural products databases. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different than current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries is located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space.

137 citations

Journal ArticleDOI
TL;DR: In hematopoietic cells, genetic ablation of tissue factor–PAR2 signaling reduced adipose tissue Macrophage inflammation, and specific pharmacological inhibition of macrophage tissue factor signaling rapidly ameliorated insulin resistance.
Abstract: Fahumiya Samad and her colleagues have shown that the serine protease tissue factor, a key regulator of coagulation, has a role in obesity and metabolic disease. They find that tissue factor signaling in adipocytes promotes obesity, whereas its signaling in adipose tissue macrophages promotes local inflammation and insulin resistance. Tissue factor, the initiator of the coagulation cascade, mediates coagulation factor VIIa–dependent activation of protease-activated receptor 2 (PAR2). Here we delineate a role for this signaling pathway in obesity and its complications. Mice lacking PAR2 (F2rl1) or the cytoplasmic domain of tissue factor were protected from weight gain and insulin resistance induced by a high-fat diet. In hematopoietic cells, genetic ablation of tissue factor–PAR2 signaling reduced adipose tissue macrophage inflammation, and specific pharmacological inhibition of macrophage tissue factor signaling rapidly ameliorated insulin resistance. In contrast, nonhematopoietic cell tissue factor–VIIa-PAR2 signaling specifically promoted obesity. Mechanistically, adipocyte tissue factor cytoplasmic domain–dependent VIIa signaling suppressed Akt phosphorylation with concordant adverse transcriptional changes of key regulators of obesity and metabolism. Pharmacological blockade of adipocyte tissue factor in vivo reversed these effects of tissue factor–VIIa signaling and rapidly increased energy expenditure. Thus, inhibition of tissue factor signaling is a potential therapeutic avenue for improving impaired metabolism and insulin resistance in obesity.

137 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842