scispace - formally typeset
Search or ask a question
Institution

Torrey Pines Institute for Molecular Studies

NonprofitSan Diego, California, United States
About: Torrey Pines Institute for Molecular Studies is a nonprofit organization based out in San Diego, California, United States. It is known for research contribution in the topics: T cell & Antigen. The organization has 2323 authors who have published 2217 publications receiving 112618 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.
Abstract: The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782-785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray "closed" conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function.

98 citations

Journal ArticleDOI
TL;DR: The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions.
Abstract: DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.

98 citations

Journal ArticleDOI
TL;DR: New research strongly suggests that quorum-quenching systems represent attractive targets for discovery of novel anti-infective agents, including immunotherapeutic strategies.
Abstract: Background: Cell-to-cell communication via exchange of small molecules, ‘autoinducers’, is a widespread phenomenon among Gram-negative and -positive bacteria. This intercellular signaling that sync...

98 citations

Journal ArticleDOI
01 Nov 2008-Traffic
TL;DR: It is found that ΔF508 export requires a local biological folding environment that is sensitive to heat/stress‐inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of Δf508.
Abstract: Proteostasis (Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916–919) refers to the biology that maintains the proteome in health and disease. Proteostasis is challenged by the most common mutant in cystic fibrosis, ΔF508, a chloride channel [the cystic fibrosis transmembrane conductance regulator (CFTR)] that exhibits a temperature-sensitive phenotype for coupling to the coatomer complex II (COPII) transport machine for exit from the endoplasmic reticulum. Whether rescue of export of ΔF508 CFTR at reduced temperature simply reflects energetic stabilization of the chemical fold defined by its primary sequence or requires a unique proteostasis environment is unknown. We now show that reduced temperature (30°C) export of ΔF508 does not occur in some cell types, despite efficient export of wild-type CFTR. We find that ΔF508 export requires a local biological folding environment that is sensitive to heat/stress-inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of ΔF508. Thus, the cell may require a proteostasis environment that is in part distinct from the wild-type pathway to restore ΔF508 coupling to COPII. These results are discussed in the context of the energetics of the protein fold and the potential application of small molecules to achieve a proteostasis environment favoring export of a functional form of ΔF508.

98 citations

Journal ArticleDOI
TL;DR: The functional diversity of T cells composing this repertoire ex vivo at the clonal level indicates that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+ T cells displaying multiple specificities.
Abstract: In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8+ T cells from A2+ individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26–35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer+ clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8+ T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer+ T cells can be explained by the existence of largely cross-reactive subsets of naive CD8+ T cells displaying multiple specificities.

98 citations


Authors

Showing all 2327 results

NameH-indexPapersCitations
Eric J. Topol1931373151025
John R. Yates1771036129029
George F. Koob171935112521
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Gerald M. Edelman14754569091
Floyd E. Bloom13961672641
Stuart A. Lipton13448871297
Benjamin F. Cravatt13166661932
Chi-Huey Wong129122066349
Klaus Ley12949557964
Nicholas J. Schork12558762131
Michael Andreeff11795954734
Susan L. McElroy11757044992
Peter E. Wright11544455388
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Novartis
50.5K papers, 1.9M citations

92% related

Genentech
17.1K papers, 1.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202210
202153
202060
201950
201842