scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Exhaust gas. The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental and theoretical studies on Mg(BH4)2 were carried out from the viewpoint of the formation of the intermediate compound MgB 12H12 with B12H12 cluster, finding that 6.1 mass% of hydrogen can be rehydrided through the formation in the present reHydriding condition.
Abstract: Experimental and theoretical studies on Mg(BH4)2 were carried out from the viewpoint of the formation of the intermediate compound MgB12H12 with B12H12 cluster. The full dehydriding and partial rehydriding reactions of Mg(BH4)2 occurred according to the following multistep reaction: . The dehydriding reaction of Mg(BH4)2 starts at approximately 520 K, and 14.4 mass% of hydrogen is released upon heating to 800 K. Furthermore, 6.1 mass% of hydrogen can be rehydrided through the formation of MgB12H12. The mechanism for the formation of MgB12H12 under the present rehydriding condition is also discussed.

113 citations

Patent
07 Dec 2004
TL;DR: In this article, a first arm member and a second arm member are provided, where the first arm is positioned between a cam and a valve body to oscillate in synchronism with the rotation of the cam.
Abstract: A first arm member and a second arm member are provided. The first arm member is positioned between a cam and a valve body to oscillate in synchronism with the rotation of the cam. The second arm member changes the angle of the first arm member in accordance with the rotation angle of a control shaft. The temperature prevailing in the neighborhood of the control shaft and cam is detected. The rotation angle of the control shaft is corrected so as to avoid the influence of the detected temperature.

113 citations

Patent
Tadashi Suzuki1, Hideo Sobukawa1
06 Oct 1997
TL;DR: The composite oxide and the composite oxide carrier are composed of a composite oxide in which at least one of cerium and zirconium, and aluminium disperse with extremely high homogeneity as discussed by the authors.
Abstract: The composite oxide and the composite oxide carrier are manufactured by the precursor forming step and firing step. The precursor forming step includes high speed mixing means. The composite oxide catalyst is obtained by preparing a composite of catalytic components simultaneously with the formation of the precursor of composite oxide in the step of forming the precursor of composite oxide. The composite oxide and the composite oxide carrier are composed of a composite oxide in which at least one of cerium and zirconium, and aluminium disperse with extremely high homogeneity. With this structure, the heat resistance of the carrier is improved and consequently, enlargement of particles of the composite oxide defining the carrier, and sintering of adjacent particles of the composite oxide can be restrained, whereby the catalyst using the composite oxide carrier in accordance with the present invention is excellent in heat resistance. With the present invention, the carrier is not limited to a general catalyst carrier. The carrier may be interpreted to indicate general formed bodies. For example, the carrier with the present invention can be also used as materials for sensors and electrodes, optical materials, semiconductors and structure materials. Furthermore, the carrier can be used for a three-way catalyst, NOx catalyst or oxidation catalyst or a part thereof, and a promoter.

113 citations

Journal ArticleDOI
TL;DR: In this paper, perovskite quantum dots are incorporated into a perovskiite matrix to drive balanced ultrafast excitonic energy transfer to the quantum dots, and the resulting LEDs operate in the short-wavelength infrared region, an important regime for imaging and sensing applications.
Abstract: Light-emitting diodes (LEDs) based on excitonic material systems, in which tightly bound photoexcited electron–hole pairs migrate together rather than as individual charge carriers, offer an attractive route to developing solution-processed, high-performance light emitters. Here, we demonstrate bright, efficient, excitonic infrared LEDs through the incorporation of quantum dots (QDs)1 into a low-dimensional perovskite matrix. We program the surface of the QDs to trigger fast perovskite nucleation to achieve homogeneous incorporation of QDs into the matrix without detrimental QD aggregation, as verified by in situ grazing incidence wide-angle X-ray spectroscopy. We tailor the distribution of the perovskites to drive balanced ultrafast excitonic energy transfer to the QDs. The resulting LEDs operate in the short-wavelength infrared region, an important regime for imaging and sensing applications, and exhibit a high external quantum efficiency of 8.1% at 980 nm at a radiance of up to 7.4 W Sr−1 m−2. Embedding perovskite quantum dots in perovskite leads to bright, efficient 980 nm LEDs with applications in imaging and sensing.

113 citations

Journal ArticleDOI
TL;DR: The emergence of bulk superconductivity in Al-Zn-Mg quasicrystal at a very low transition temperature about 0.05 K demonstrates that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one.
Abstract: Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al–Zn–Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of $$T_{\rm c} \cong 0.05$$ K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity. Superconductivity is evidenced in crystals and amorphous solids, but remains to be discovered in quasicrystals. Here, Kamiya et al. report the emergence of bulk superconductivity in Al-Zn-Mg quasicrystal at a very low transition temperature about 0.05 K.

113 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541