scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Battery (electricity). The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Patent
18 Mar 1997
TL;DR: In this article, a power output apparatus consisting of a clutch motor (30) and an assist motor (40) is used to convert the energy output from an engine (50) driven at a high efficiency to energy expressed as the product of a revolving speed and a torque of a drive shaft (22) and to be output to the drive shaft.
Abstract: A power output apparatus of the invention includes a clutch motor (30) and an assist motor (40) that allow energy output from an engine (50) driven at a driving point of high efficiency to be converted to energy expressed as the product of a revolving speed and a torque of a drive shaft (22) and to be output to the drive shaft (22). In case that a large torque is required, for example, when the vehicle starts on a rising slope or runs at a low speed, the engine (50) is driven at a high-energy driving point having a large torque and a high efficiency. This structure causes large electric power to be generated by excess energy greater than the energy generally consumed and enables a battery (94) to be charged with the large electric power. The power output apparatus of the invention further has functions of predicting the process of charging the battery (94) with the large electric power based on a driving state of the vehicle and topographical information and lowering the remaining charge of the battery (94) in advance according to the requirements. This process effectively prevents the battery (94) from being damaged with excess charging.

470 citations

Journal ArticleDOI
TL;DR: In this article, a review of photocatalytic systems for CO 2 reduction using metal complexes, especially rhenium(I) complexes as a main component, is presented.

468 citations

Journal ArticleDOI
D. Mori1, K. Hirose1
TL;DR: In this article, a new idea of combining metal hydride and high pressure was proposed to solve some difficulties and improve performance such as gravimetric density, but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat.

467 citations

Journal ArticleDOI
Haruo Takahashi1, Bo Li1, Toshiya Sasaki1, Chie Miyazaki1, Tsutomu Kajino1, Shinji Inagaki1 
TL;DR: In this paper, an enzyme, horseradish peroxidase (HRP), was adsorbed in the manner of the single immersion method on the silica mesoporous materials FSM-16, MCM-41, and SBA-15 with various pore diameters from 27 to 92 A, and their enzymatic activities in an organic solvent and thermal stabilities were studied.
Abstract: An enzyme, horseradish peroxidase (HRP), was adsorbed in the manner of the single immersion method on the silica mesoporous materials FSM-16, MCM-41, and SBA-15 with various pore diameters from 27 to 92 A, and their enzymatic activities in an organic solvent and the thermal stabilities were studied. FSM-16 and MCM-41 showed a larger amount of adsorption of HRP than SBA-15 or silica gel when the pore sizes were larger than the 50 A. The increased enzyme adsorption capacity may be due to the surface characteristics of FSM-16 and MCM-41, which would be consistent with the observed larger adsorption capacity of cationic pigment compared with anionic pigment for these materials. The immobilized HRP on FSM-16 and MCM-41 with pore diameter 50 A showed the highest enzymatic activity in an organic toluene and thermal stability in aqueous solution at the temperature of 70 °C. The immobilized enzymes on the other mesoporous materials including large or small pore sized FSM-16 showed lower enzymatic activity in an or...

466 citations

Patent
03 Aug 2005
TL;DR: The organic EL device of the present invention includes a plurality of organic compound-containing layers provided between a cathode and an anode as discussed by the authors, which has a high luminous efficiency and a long half-life.
Abstract: The organic EL device of the present invention includes a plurality of organic compound-containing layers provided between a cathode and an anode. Of two of the organic compound-containing layers adjacent to each other, one layer positioned nearer the anode has electron mobility lower than that of the other layer positioned nearer the cathode. Accordingly, the organic EL device of the present invention has a high luminous efficiency and a long half-life of the initial luminance.

459 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541