scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Exhaust gas. The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Journal ArticleDOI
Jianliang Xiao1, Sylvia C.A. Nefkens1, Philip G. Jessop1, Takao Ikariya1, Ryoji Noyori1 
TL;DR: In this paper, a chiral H8-BINAP-Ru(II) complex was used to hydrogenate 2-methylbutanoic acid in up to 89% ee and over 99% yield.

101 citations

Journal ArticleDOI
TL;DR: A comprehensive atomistic analysis of electron transfer dynamics in electroneutral Ru(di-X-bpy) (CO)2Cl2 complexes with X = COOH and PO3H2 attached to the N-Ta2O5 substrate legitimates the proposed mechanism of the electron transfer.
Abstract: Recent experimental studies demonstrated that photocatalytic CO2 reduction by Ru catalysts assembled on N-doped Ta2O5 surface is strongly dependent on the nature of the anchor group with which the Ru complexes are attached to the substrate. We report a comprehensive atomistic analysis of electron transfer dynamics in electroneutral Ru(di-X-bpy) (CO)2Cl2 complexes with X = COOH and PO3H2 attached to the N–Ta2O5 substrate. Nonadiabatic molecular dynamics simulations indicate that the electron transfer is faster in complexes with COOH anchors than in complexes with PO3H2 groups, due to larger nonadiabatic coupling. Quantum coherence counteracts this effect, however, to a small extent. The COOH anchor promotes the transfer with significantly higher frequency modes than PO3H2, due to both lighter atoms (C vs P) and stronger bonds (double vs single). The acceptor state delocalizes onto COOH, but not PO3H2, further favoring electron transfer in the COOH system. At the same time, the COOH anchor is prone to decom...

101 citations

Journal ArticleDOI
TL;DR: In this paper, a SiO2 sphere was immersed into molten Al-Mg alloy with ultrasonic vibration, which contributes to an increase in molten matrix temperature, and then the original matrix of Al-mg alloy changed into Al-Si due to the reduction of SiO 2 particles.

101 citations

Patent
22 Apr 2008
TL;DR: In this paper, a control device is disclosed which can obtain increased fuel economy performance depending on a kind of fuel in a vehicle having an internal combustion engine and an electric motor when the fuel supplied to the engine is altered.
Abstract: A control device is disclosed which can obtain increased fuel economy performance depending on a kind of fuel in a vehicle having an internal combustion engine and an electric motor when the kind of fuel supplied to the internal combustion engine is altered. A determining vehicle speed (V1) and determining output torque (T1), representing a boundary value with which a step-variable control region and a continuously variable control region of a shifting mechanism (10) are demarcated, are altered such that the higher the mixing ratio of ethanol, the lower will be the determining vehicle speed (V1) and determining output torque (T1). Therefore, the determination is made whether to operate a first electric motor (M1) depending on the mixing ratio of ethanol, making it possible to obtain increased fuel economy performance in line with the mixing ratio of ethanol.

101 citations

Journal ArticleDOI
TL;DR: In this article, the effects of Mg-doping were examined by electrochemical impedance spectroscopy (EIS) and scanning transmission electron microscopy-electron energy loss spectrography.

101 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541